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1.1 Introduction



2025 International Year of Quantum Science and Technology

The 2025 International Year of Quantum Science and Technology proclaimed by United Nation marks a century
since Werner Heisenberg submitted his seminal paper ‘On quantum-theoretical reinterpretation of kinematic
and mechanical relationships’ ! to the Zeitschrift fiir Physik.

This influential work, commonly known as the ‘reinterpretation’ (“Umdeutung”) paper, sought to establish a
model of quantum mechanics based on relationships between quantities that are, in principle, observable.

Werner Heisenberg together with Max Born and Pascual Jordan founded Matrix Mechanics, in which physical
guantities are represented through matrices, that is, operators.

L W. Heisenberg, Z. Physik 33, 879-893 (1925).



Circuit Quantum Electrodynamics

Circuit quantum electrodynamics ! deals with superconducting circuits operating in the quantum regime.

1U. Vool, M. Devoret, Introduction to quantum electromagnetic circuits, Int. J. Circ. Theor. Appl. 2017; A. Blais et al., Circuit quantum electrodynamics,
Reviews of Modern Physics 93, April-June 2021.



First hints to quantum circuits

Quantum Electrodynamic Circuits at Ultralow
Temperature

Allan Widom

Department of Physics, Northeastern University, Boston, Massachuseits

(Reccived March 8, 1979, revised May 30, 1979)

Within present low-temperature technology it is possible to construct macro-
scopic circuits which exhibit quantum behavior, i.e., subcircuit currents and
voltages need to be treated as operators rather than numerical quantities. The
general theory of “quantum circuits’ is discussed with a view toward the
experimental verification of quantum electrodynamics on a macroscopic scale.

1. INTRODUCTION

kg = 1.380649 x 10723 ) - K'?

Boltzmann constant

It is well known that electrodynamic processes at frequency w require
quantum mechanics if the temperature is sufficiently small, 7 < Aw/ kg. With
present ultralow-temperature technology, macroscopic circuits at only
moderately high frequency are “‘quantum circuits.” The nature of quantum
circuits is such that voltages and currents are operators rather than numeri-
cal quantities. Circuit oscillations are *‘quantized” into photons.

h =1.054571817...x10734 J-s’

(reduced) Planck constant

The purpose of this work is to present the general theory of quantum
circuits with a vicw toward the experimental verification of quantum electro-
dynamics on a macroscopic scale. Clearly this requires an ultralow-
temperature regime.

10 mK < 208.366..MHz

A. Widom, Quantum Electrodynamic Circuits at Ultralow Temperature, Journal Journal of Low Temperature Physics, Vol. 37,

Nos. 3/4, 1979.




“Do macroscopic degrees of freedom obey quantum mechanics?”

VOLUME 55, NUMBER 15 PHYSICAL REVIEW LETTERS 7 OCTOBER 1985

Energy-Level Quantization in the Zero-Voltage State
of a Current-Biased Josephson Junction

John M. Martinis, Michel H. Devoret,® and John Clarke
Department of Physics, University of California, Berkeley, California 94720, and Materials and Molecular
Research Division, Lawrence Berkeley Laboratory, Berkeley, California 94720
(Received 14 June 1985)

- We report the first observation of quantized energy levels for a macroscopic variable, namely the
J. M. Martinis phase difference across a current-biased Josephson junction in its zero-voltage state. The position M. H. Devoret
of these energy levels is in quantitative agreement with a quantum mechanical calculation based on
parameters of the junction that are measured in the classical regime.

PACS numbers: 03.65.—w, 05.30.—d, 74.50.+r
Josephson

junction
/

Do macroscopic variables obey quantum mechanics? °
This question, although central to the theory of mea- /

surement,! has only recently been addressed experi-
mentally. An attractive candidate for such experimen-
tal investigation is the Josephson tunnel junction, a

system in which thermal fluctuations and perturbations X
due to the environment can be made negligible. In the
case of the current-biased junction, the macroscopic
variable is the phase difference, §, between the super-
conducting order parameters on either side of the bar- ; ®
rier. The junction can be represented as a particle J. Clarke
moving in a one-dimensional tilted cosine potential.?

LA. J. Legget, Macroscopic quantum systems and the quantum theory of measurement, Progress of Theoretical Physics
Supplement, 1980. 10



Science, vol. 239, 1988

“Macroscopic nucleus with wires”

Quantum Mechanics of a Macroscopic Variable:
The Phase Difference of a Josephson Junction

JoHN CLARKE, ANDREW N. CLELAND, MICHEL H. DEVORET, DANIEL ESTEVE,
JoHN M. MARTINIS

Experiments to in te the quantum behavior of a
macroscopic dcgreevc:ft'!g:edom, namely the phase differ-
ence across a Josephson tunnel junction, are described.
The iments involve measurements of the escape rate
of the junction from its zero voltage state. Low tempera-
ture measurements of the escape rate for junctions that
are cither nearly undamped or moderately damped agree
very closely with predictions for macroscopic quantum
tunncling, with no adjustable parameters. Microwave
pectro reveals quantized levels in the poten-
ﬁ the junction in cxmt agreement with
quantum-mechanical calculations. The system can be re-

garded as a “macroscopic nucleus with wires.”

RE MACROSCOPIC DEGREES OF FREEDOM GOVERNED BY
quantum mechanics? Our everyday experience tells us that a

ical description appears to be entircly adequate. The

trajectory of the center of mass of a billiard ball is predicted
wonderfully well by classical mechanics. Even the Brownian motion
of a tiny speck of dust in a drop of water is a purely classical
phenomenon. Until recently, quantum mechanics manifested itself
at the macroscopic level only through such collective phenomena as
superconductivity, flux quantization, or the Josephson effect. How-
ever, these “macroscopic” effects actually arise from the coherent
superposition of a large number of microscopic variables each
governed by quantum mechanics. Thus, for example, the current
through a Josephson tunnel junction and the phase difference across
it are normally treated as classical variables. As Leggett (I) has

992

emphasized, one must distinguish carefully between macroscopic
quantum phenomena originating in the superposition of a large
number of microscopic variables and those displayed by a single
macroscopic degree of freedom. It is the latter that we discuss in this
article.

Our usual observations on a billiard ball or Brownian particle
reveal classical behavior because Planck’s constant # is so tiny.
However, at least in principle there is nothing to prevent us from
designing an experiment in which these objects are quantum
mechanical. To do so we have to satisfy two criteria: (i) the thermal
energy must be small compared with the separation of the quantized
energy levels, and (ii) the macroscopic degree of freedom must be
sufficiently decoupled from all other degrees of freedom if the
lifetime of the quantum states is to be longer than the characteristic
time scale of the system (1). To illustrate the application of these
criteria, following Leggett (I) we consider a simple harmonic
oscillator consisting of an inductor L connected in parallel with a
capacitor C. The flux ¢ in the inductor and charge 4 on the capacitor
are macroscopic conjugate variables. Observations on the oscillator
arc made by means of leads that unavoidably couple it to the
environment. The dissipation so introduced is represented by a
rcsnstorRmpmllclw:ﬂlLandC The natural angular frequency of
oscillation is wg = (LC)™'2, the impedance at the resonance fre-
quency is Zo = (L/C)"2, and the quality factor (ratio of stored
energy to energy dissipated in one oscillation) is Q = woCR = R/Z,.
To observe quantum effects we thus require (i) Awo >> kpT, where

J. Clarke and A. N. Cleland are in the Dep of Physics, University of California,
and the Materials and Chemical Sciences Division, 1 Berkeley Lab
Berkeley, CA 94720. During the time these ts were M. H
Devoret and J. M. Martinis were af the same address; and D. Esteve are currently at
Service de Physique, Centre d wamesdc&chy, 91191 Gif-sur-Yvette
Cedex, France.

SCIENCE, VOL. 239
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Circuit Quantum Electrodynamics

Circuit quantum electrodynamics ! deals with superconducting circuits operating in the quantum regime.

Superconducting quantum circuits represent one of the most promising pathways for developing digital quantum
computing 2, analogic simulation of quantum systems 3 and optimization using quantum annealing 4.

1U. Vool, M. Devoret, Introduction to quantum electromagnetic circuits, Int. J. Circ. Theor. Appl. 2017; A. Blais et al., Circuit quantum electrodynamics,
Reviews of Modern Physics 93, April-June 2021.
2 M. Nielsen, I. Chuang, Quantum Computation and Quantum Information (10th anniversary ed.) Cambridge University press, 2010.
3]. Georgescu, S. Ashhab, F. Nori, Quantum Simulation, Reviews of Modern Physics, 2014.
4B. K. Chakrabarti et al., Quantum Annealing and Computation: Challenges and Perspectives". Philosophical Transactions A. 381, 2023.
12



Digital Computation

» Classical digital computers are deterministic, they determine a specific singular outcome for any input.

» Quantum digital computers are probabilistic, finding the most likely solution to a problem.

For extremely complex problems that quantum computers could eventually tackle (chemistry, cybersecurity,
data analytics and artificial intelligence, optimization and simulation, data management and searching),
probabilistic approach might dramatically reduce computation time by hundreds of thousands of years
compared to conventional techniques implemented on classical computers.

13



Classical Bit versus Qubit

» Classical bits exist in one of two distinct states, e.g., two distinct voltage values of digital devices.

» Qubits or quantum bits are the quantum version of classical bits (basic unit of quantum information). They
are realized through two-level quantum systems.

The classical bit is in one state or the other, instead, quantum mechanics allows the qubit to be in a coherent
superposition of two states simultaneously.

14




Quantum Digital Computer

A set of qubits forms a qubit register.

Quantum computers perform calculations by manipulating the quantum states of qubits within the register.

Many possible outcomes are canceled out through interference, while others are amplified. The amplified
outcomes are the most likely solutions to the problem that is object of the calculations.

15



Qubit

Any two-level quantum mechanical system can implement a qubit:

» artificial atoms made with superconducting quantum circuits, with energies E, and Ey,

|1)(ket 1) E;
E, < E;

|0) (ket 0) Ey

» intrinsic magnetic moment of electrons in which the two levels can be taken as the magnetic moment up and
down;

» polarization of single photons in which the two level can be taken as the horizontal and vertical linear
polarizations of light.

16



Superposition of States

» artificial atoms made with superconducting quantum circuits, with energies E, and E;,

|1)(ket 1) E;
E, < E;

|0) (ket 0) Ey

|0) is the state of the atom for which the measurement of energy yields certainly the value E, and |1) is the
state for which the measurement of energy yields certainly the value Ej;.

17



Superposition of States

» artificial atoms made with superconducting quantum circuits, with energies E, and E;,

|1)(ket 1) E;
E, < E;

Eq

|0) (ket 0)

|0) is the state of the atom for which the measurement of energy yields certainly the value E, and |1) is the
state for which the measurement of energy yields certainly the value Ej;.

The state of the atom can also be a linear superposition of the states |0) and |1),
[Y) = col0) + c1]1),

where ¢y and c¢; are complex numbers with |cy|? + |¢,|? = 1.

18



Superposition of States

» artificial atoms made with a superconducting quantum circuit, with two values of energy E, and Ej,

|1)(ket 1) E;
E, < E;
|0) (ket 0) Ey

In general, the state of the atom is a linear superposition of the states |0) and |1),

[Y) = ¢o|0) + c4]1)

where ¢y and ¢; are complex numbers with |cy|? + |c|? = 1.

> |c0|2 yields the probability that the outcome of the measurement of energy is E;

> |c1|2 yields the probability that the outcome of the measurement of energy is E;.

Information is represented by the statistics.

19



Quantum Measurement and Collapse of State

|1)(ket 1) E;

|0) (ket 0) Ey

[Y) = col0) + cq]1)

If the result of the measurement of energy of the atom is E, the quantum state |y) of the atom collapses after the
measurement to the state e'¥° |0), and if the result of the measurement of energy is E; the quantum state of the
atom |Y) collapses after the measurement to the state e'¥1 |1), where the phase factors are not experimentally
accessible.

The quantum measurement is an irreversible process.

20



Qubit Physical Implementation

More common types of qubits in use are:

Artificial atoms based on superconducting quantum circuit made with superconducting metals operating at
temperatures of the order of 10 mK. These qubits are favored for their speed in performing computations and
fine-tuned control.

Trapped ions are noted for the long coherence times and high-fidelity measurements.

Quantum dots are small semiconductors that capture a single electron and use it as a qubit. They offer promising
potential for scalability and compatibility with existing semiconductor technology.

Photons are individual light particles used to send quantum information across long distances through optical
fiber cables; they are currently being used in quantum communication and quantum cryptography.

In Neutral atoms qubits are encoded in the energy levels and are controlled with lasers. They are well suited for
scaling and performing logical operations.

Ze-Liang Xiang, Sahel Ashhab, J. Q. You, Franco Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems,
Rev. Mod. Phys. 85, 623 — Published 9 April, 2013. 21



Superconducting Quantum Circuits

Trapped ions, neutral atoms, electron spins in silicon and quantum dots, polarized photons, ... encode quantum
information in microscopic elements, such as ions, atoms, electrons or photons.

Superconducting quantum circuits are quite different: they are macroscopic in size, and they are printed
lithographically on wafers like classical computer chips. Their quantum features such as energy spectra,
superpositions of states, transition probabilities, interference, entanglement, coupling strengths, coherence

rates depend on macroscopic circuit parameters. Consequently, it is possible to design superconducting quantum
circuits so that they display specific quantum mechanical behaviors.

22



Superconducting Quantum Circuit for Quantum Computing

G
Cy—= JI X Dext XJJ

Readout
resonator ——

e oo o o o o e o e o o o o o o = = = e

The transmon, which can implement a qubit, is realized through a nonlinear LC circuit.

The readout resonator, used to measure the transmon quantum state, consists of a linear LC circuit.

By firing coherent microwave signal, it is possible to control the qubit behavior and read its quantum state.

By courtesy of Alessandro Miano
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Quantum Chip

Quantum Digital Processor

Microwave Resonator:
Addresses and couples
qubits on processor

- -

— -

Credit: IBM Research

Transmon Qubit:
Behaves like an
artifical atom

Josephson Junction:
Superconducting
inductor, kept at
0.015 Kelvin

w— ] OOpmM

Niobium Capacitor

24



Superconducting Circuit - Based Quantum Processors

Quantum Digital Processor

IBM 1.121 Qubit (physical) December 2023 (USA)

Chinese Academic of Science 504 Qubit (physical) 2024 (China)

Google 105 Qubit (physical) December 2024 (USA)

Rigetti 84 Qubit (physical) December 2023 (USA)

University of Science and Technology of China 105 Qubit (physical) December 2024 (China)

Quantware 64 Qubit (physical) February 2023 (Delft, Europe)

Annealing Quantum Processors

D-Wave 7.440 Qubit 2024 (Canada)

25



25 - Qubit Quantum Processor in Naples
(Dipartimento di Fisica “Ettore Pancini”)

\ /2
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M ‘u =)
i

HAN

o
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Credit: Quantware



1.2 A glimpse to superconducting circuits



Superconducting circuits

The toolbox of elements of superconducting circuits consists of linear elements such as capacitors, inductors,

coupled circuits, transmission lines, distributed resonators and nonlinear elements based on Josephson
junctions 1.

They are made with low temperature superconducting metals * (Type | superconductors): aluminum (critical
temperature 1.18 K), niobium (critical temperature 9.25 K), ....

1T. Orlando, K. A. Delin, Foundations of Applied Superconductivity, Addison Wesley (1991).

28



Cryostat: Cabled Dilution Refrigerator

b) Drive Flux  Pump Output
35K
gl 5] [g
Actually, superconducting circuits IR & S| A

necessitate millikelvin temperatures.

These low temperatures are essential for
initializing circuits in their ground state and
minimizing errors caused by thermal
excitation during operation.

Such temperatures are attained using
dilution refrigerators.

The pressure in the cryostat is below
10> mbar.

Sample

M Isolator \_ Low-pass filter «@ Circulator
B> TWPA  \ Band-pass filter Dir. Coupler

P> HEMT  ~< Eccosorb filter @ Termination
m Thermalisation of outer conductor

Figure 3 Cabled dilution refrigerator (DR). (@) Bluefors XLD DR with 25 drive lines, 25 flux lines, 4 read-out, 6
read-in, and 5 pump lines installed (see end of Sect. 3.1 for details). (b) Schematic of the cabling configuration

within the DR

N\

S. Krinner et al., Engineering cryogenic setups for 100 qubit scale superconducting circuit systems, EPJ Quantum Technology, 2019. 29



Fundamental Nonlinear Element: Josephson Junction
gap of an insulating material

1nm S
4 |
S
100 -1000 nm Superconducting electrode Superconducting electrode
(for instance, Aluminum) (for instance, Aluminum)
In low temperature

superconducting metals free
electrons are paired in Cooper
pairs.

In Josephson junctions Cooper
pairs cross the insulating thin

barrier through the tunneling
effect. L Insulator

A. Barone, G. Paterno, Physics and Applications of the Josephson Effect, John Wiley & Sons, Inc.



Josephson Junction macroscopic behaviour: ideal one-port

- ®,d6 ¥ i
2 dt v I
— c
[ = I.sin(0)

=

0 is the Josephson phase between the two superconducting electrodes of the junction.

v ®,= 2.0678 ... x1071> weber is the «quantum of superconducting magnetic flux».

v’ | is the critical current of the junction: a macroscopic parameter proportional to the
area of the junction and “transparency” of the tunnel barrier; typical values of /. are in
the uA + nA range .

A. Barone, G. Paterno, Physics and Applications of the Josephson Effect, John Wiley & Sons, Inc.

31



characteristic
relations

Josephson Junction ideal one-port

V= e

. . ¢
[ = I.sin(2m 30)

=

¢ = %6 “effective (kinetic) flux”

The Josephson junction
behaves as a nonlinear inductor

32



Josephson Junction ideal one-port

- d¢ ¥ i
v dt ] : L
_ ¢ = 0 “effective (kinetic) flux v I,
i = Icsin(zni) _ linear inductor
- @y . -
//
L/
"1]i=¢/L,

NANNNNAN
VY VUYVNY 4

e
CDU

1 @, “kinetic” inductance of the
L,=——=1uH +1nH . .
2 1, Josephson junction

The linearized one-port around ¢ = 0 is equivalent to a linear inductor with inductance L;

33



Josephson Junction ideal one-port

L,

v= ®
dt = 2—;6 “effective (kinetic) flux”

. . ¢
[ = I.sin(2m cITO)

=

Stored energy in the Josephson junction

¢
Wi(@) = f i($")d¢’ = Ej[1 — cos(2n/Dy)]

0

1
Ej = 5—1:®o = 10eV + 10meV

leV =1.60...x10719) 2x

34



Equivalent scheme of a lossless Josephson Junction

S
1nm
$ | Superconductor-insulator-superconductor —_IC>< = (
S

Junction
capacitance

—> O
100 -1000 nm

The values of the junction capacitance depend on the junction area and insulating thickness.
In experiments, typical values are in the pF — fF range.

35



A Simple Superconducting Circuit: Classical Description

=

i =i(¢p) v c- (T j(®)

It is convenient to choose the flux ¢ as degree of freedom of the circuit,
t
$(t) = f (2)dr .

i = i(¢) is the characteristic of the nonlinear inductor



A Simple Superconducting Circuit: Classical Description

=

i=i) @ c—— (Mo

The equation governing the flux is

2
=L i) = )



A Simple Superconducting Circuit: Classical Description

i =i(¢p) ¢

The equation governing the flux is

Ly

d’¢p dWw,;

dt?

+ag =IO

¢
Wi () = j i(¢)dg
0
o aw,
i(¢p) = Ty

stored energy
in the nonlinear
inductor




Artificial atom

Atom Artificial atom: «macroscopic nucleus

with wires»
electron

’ o AVAVS Wi (o) —— CD

nucleus . : S m—
Time varying

electromagnetic field

The nonlinear LC superconducting circuit, in principle, can emulate the behaviour of the electron in a hydrogen atom.

39




Superconducting circuit versus electron in 1-D potential well: classical description

Ly

c
d?¢ dVV;

Jj(®)

Wa(x)
External electric
. — - me
field Z£-, 1%
e . R
— x
X

Electron in a potential well W, (x)
under the action of an external electric field

d?x dw,
m, I i + F(t)
Force due to Force due to
the well the external

electric field

40



Superconducting circuit versus electron in 1-D potential well: classical description
W, (x)
Ly

external electric "
field ~ =2 -, 5 Vi
C j(@® o o—— >
X

Electron in a potential well W, (x)
under the action of an external electric field

d’¢ dw, d?x  dW,(x)
+ =j(t + = F(t
acz T ap 10 Me'qez T dx (©)
Macroscopic system Microscopic system

The behaviour of the superconducting circuit is analogous to that of the electron in 1-D potential well,
both in the classical and quantum regime.




1.3 Lagrangian and Hamiltonian formulations of classical mechanics

L.D. Landau & E.M. Lifshitz, Mechanics (A Course of Theoretical Physics, Volume 1) Pergamon Press.



An electron with one degree of freedom

electric

_ . 1,
Kinetic energy of the electron (non-relativistic) K(x) = 3 mex?

Potential energy of the electron W, = W, (x)

43



Lagrangian Formulation

electric

Kinetic energy of the electron (non-relativistic) K(x) = 3 mex?

Potential energy of the electron W, = W, (x)

System Lagrangian L(x, x;t) = K(x) — W,(x) + F(t)x

/ \ \ Contribute

Kinetic energy  Potential energy due to the external field

L.D. Landau & E.M. Lifshitz, Mechanics (A Course of Theoretical Physics, Volume 1) Pergamon Press.

44



Lagrangian Formulation

electric
field ~ Z - R —
v =
--> 0=
! . >

X

me

Circuit Lagrangian: L(x,x;t) = K(x) — W,(x) + F(t)x

Action of the Electron on the time interval (t;,t,): S{x(t)} = fttlz L[x(t), x(t); t]dt

The action is a functional of x(t)

45



Lagrangian Formulation

electric
field ~ Z - R —
v =
-—>
—t—

X

me

Circuit Lagrangian: L(x,x;t) = K(x) — W,(x) + F(t)x

Action of the electron on the time interval (t1,t,): S{x(t)} = fttlz L[x(t), x(t); t]dt

The action is a functional of x(t)

The Planck constant i, which is of foundational importance in quantum physics, is the quantum of action,

h = 6.62607015 x 10734 J- s (exact value)

Reduced Planck constant A = % = 1.054571817...x1073% ). s

46



Lagrangian Formulation

electric
field ~ Z - R

e

X

me

v

Circuit Lagrangian: L(x,x;t) = K(x) — W,(x) + F(t)x

Action of the electron on the time interval (t1,t,): S{x(t)} = fttlz L[x(t), x(t); t]dt

The action is a functional of x(t)

h = 1.054571817...x10734J- s

When the action of the electron is of the order of the Planck’s constant,
guantum behaviour are important.

47



Principle of Least Action

The particle moves in any interval (t,, t,) in such
a way that the action is stationary, i.e.,

S = S{x(t) + 6¢p(t)} — S{x(t)} =0

for any dx(t) with 6x(t;) = dx(t,) = 0.

x(t) + 6x(t)
1T~
! S ~2/ 1
I 1
x(t) :
] | _
T T, t

to

S{x(t)} =f L[x(t), x(t); t]dt

L.D. Landau & E.M. Lifshitz, Mechanics (A Course of Theoretical Physics, Volume 1) Pergamon Press.

tq
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Euler — Lagrange equation

The particle moves in any interval (t4,t,) in such
a way that the action is stationary, i.e.,

S = S{x(t) + 6¢p(t)} — S{x(t)} =0

for any dx(t) with 6x(t;) = dx(t,) = 0.

x(t) + 6x(t)
1T~
! S ~2/ 1
I 1
x(t) :
] | _
T T, t

to

S{x(t)} =f L[x(t), x(t); t]dt

tq

The action is stationary if its first variation with respect to x(t) is equal to zero.

'

d oL 0L

— — — — = 0 Euler - Lagrange equation of the particle
dt 0x

0x

49



Euler — Lagrange equation

1
L(x,x;t) = > myx? — W,(x) + F(t)x

: . d 0L 0L d?x  dW,(x)
Itis easy to verifythat —_— __— — B = F(t
fior ok "0 WD megmt—r (©)




Conjugate Mechanical Variables

electric "
field ~ Z - s e v = %
® >

X

Lagrangian L(x, x;t) = gmexz — W,(x) + F(t)x

Euler-Lagrange equation 4oL _ oL _ 0
grange eq dt 9% dx
. oL )
Conjugate momentum p = 27 = MeX

(x, p) are said to be canonical conjugate variables: they are state variables of the system
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Conjugate Mechanical Variables

electric "
field ~ Z - s e v = %
® >

X

Lagrangian L(x, x;t) = Imox? —W (x) + F(t)x
2 e a

Euler-Lagrange equation 4oL _ oL _ 0
grange eq dt 9% dx
i oL )
Conjugate momentum p = 27 = MeX

(x, p) are said to be canonical conjugate variables: they are state variables of the system

Canonical conjugate physical variables play a very important role:
in the quantum regime they cannot be measured at the same time with the same precision,
Heisenberg Uncertainty Principle




Hamiltonian Formulation

electric "
field ~ Z - s e v = %
® >

X

We require a model that treats position and conjugate momentum on equal footing.

Lagrangian L(x, x;t) = émexz — W,(x) + F(t)x
Conjugate momentum p = Py

Hamiltonian of the system H = (px — L)

L.D. Landau & E.M. Lifshitz, Mechanics (A Course of Theoretical Physics, Volume 1) Pergamon Press.
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Hamiltonian Formulation

electric
i - m
field ~ 2 -, €

--> @ vV = X

X

v

We require a model that treats position and conjugate momentum on equal footing.

Lagrangian L(x, x;t) = émexz — W,(x) + F(t)x

: oL : . 1
Conjugate momentum p = ——=m,x = x =—7D
ax Mme

Hamiltonian of the system H = px — L
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Hamiltonian Formulation

eIectric

field ~ 2 -,
__>. P .

We require a model that treats position and conjugate momentum on equal footing.

Lagrangian L(x, x;t) == me — W,(x) + F(t)x

. oL . . 1
Conjugate momentum p = 7= MeX =X =—1p
e

Hamiltonian of the system H(p,x;t) = px — L = Zrln F(t)x
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Hamiltonian Formulation

electric
field ~ Z -

Mme
e

X

v

1

Hamiltonian of the system H(p, x;t) = [— p? + W, (x)]—F(t)x

2me
. OH
X ==,
Hamilton equations = apaH Verify that the conjugate variables are governed by the Hamilton equations.
7= "o

L.D. Landau & E.M. Lifshitz, Mechanics (A Course of Theoretical Physics, Volume 1) Pergamon Press.
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Hamilton equations -

Hamiltonian Formulation

electric
field ~ Z -

me
e

X

1
2m,

Hamiltonian of the system H(p,x;t) = [

p? + W, (x)] —F (t)x

State equation
of the electron
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Hamiltonian Formulation

electric
field ~ Z -

me
e

X

——p? + W,y ()] —F (6)x

| J
I}

particle energy

Hamiltonian of the system H(p,x;t) = [

Applied field

contribution
Fundamental property of the Hamiltonian

dH 0H  dF
dt ot T dt

58



Hamiltonian Formulation

electric
field ~ Z -

me
e

X

——p? + W,(x)] — F(t)x

{ J
U

particle energy

Hamiltonian of the system H(p,x;t) = [

Applied field

contribution
Fundamental property of the Hamiltonian

dH . _
E_Olf F(t)—O

When F(t) = 0 the Hamiltonian is a constant of motion: in this case it coincides with the energy of the particle,
which is conserved because the system is isolated.
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Hamiltonian Formulation

electric
me

field ~ 2 -
e

v

X

1
2m,

Hamiltonian of the system H(p,x;t) = [—p? + W,(x)] —F(t)x

The Hamiltonian plays a fundamental role in Quantum Mechanics.

The Hamiltonian is the physical variable on which the Schrodinger equation is based: the Schrodinger governs the time
evolution of the quantum state of the particle.
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1.4 Lagrangian and Hamiltonian formulations for classical superconducting circuits



A Simple Superconducting Circuit

Ly
+
Energy stored Energy stored
in the nonlinear inductor in the capacitor

v c—— (Hiow |

1 .
W, = W (¢) W, =5 Cv? = C¢?




Lagrangian Formulation

Ly
+
Energy stored Energy stored
in the nonlinear inductor in the capacitor

v c—— (Hiow |

1 .
W, = W (¢) W, =5 Cv? = C¢?

Circuit Lagrangian: L(¢, ¢;t) = —; CHp? — Wi (¢) +j(t)¢

Wells, D.A.. Application of the Lagrangian equations to electrical circuits. Journal of Applied Physics, 9(5), 312—320 (1938).

Chua, L. and McPherson, J. Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks. |EEE

Transactions on Circuits and Systems , 21(2), 277-286 (1974).
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Lagrangian Formulation

Ly
+
Energy stored Energy stored
in the nonlinear inductor in the capacitor

v c—— (Hiow |

1 .
— 2 2
W, = W (¢) W, =>Cv?=-Cé

Circuit Lagrangian: L(¢, ¢;t) = —; CHp? — Wi (¢) +j(t)¢

Circuit action on the time interval (t,t,): S{¢p(t)} = fttlz Llp (), $(0); t]de

The action is a functional of ¢ (t)




Lagrangian Formulation

Ly
+
Energy stored Energy stored
in the nonlinear inductor in the capacitor

v c—— (Hiow |

1 .
— 2 2
W, = W (¢) W, =>Cv?=-Cé

Circuit Lagrangian: L(¢, ¢;t) = —; CHp? — Wi (¢) +j(t)¢

Circuit action on the time interval (t,t,): S{¢p(t)} = fttlz Llp (), $(0); t]de

The action is a functional of ¢ (t)

d oL 0JL

Principle of least action  —— —— = 0 Euler-Lagrange equation
P dtag 0o sranes £q
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Energy stored
in the nonlinear inductor

W, = W (¢)

) 1 .
L(p, d;t) = S CP* = Wi(¢) +j(O)¢

Lagrangian Formulation

Ly

Energy stored
in the capacitor

c—— (Hiow |

1 .
WC:ECUZ :§C¢2

d oL 0JL

———— =0 Euler-Lagrange equation
dtad 0¢ Branse e

| |

ic+i—j=0 CurrentKirchhoff law

|

d2¢ dw,

+——=jt) =0

¢ dt?  do¢



Canonically conjugate variables of the circuit

Ly Yic
+
Energy stored Energy stored
in the nonlinear inductor in the capacitor

v c—— (Hiow |

1 .
W, = W (¢) W, =5 Cv? = C¢?

) 1 .
L(p, d;t) = S CP* —Wi(¢) +j(D)¢

d oL 0JL

E% — % = 0 Euler-Lagrange equation

. oL
Conjugate momentum q = 29

(¢, q) are canonical conjugate variables of the circuit: they are state variables of the system



Canonically conjugate variables of the circuit

2, -

Energy stored Energy stored
in the nonlinear inductor in the capacitor
v c—— (1)iw ;

1 .
— 2 _ 2
w; = Wi (¢) We=7Cv"=50C¢

) 1 .
L(p, d;t) = S CP* —Wi(¢) +j(D)¢

d oL 0JL

E% — % = 0 Euler-Lagrange equation

. oL
Conjugate momentum ¢q :6_(,2)

As for particles, (¢, q) play a very important role:
in the quantum regime they cannot be measured at the same time with the same precision.




Hamiltonian Formulation

3 -

Energy stored Energy stored
in the nonlinear inductor in the capacitor
v c—— (Hiow |

1 .
W, = W (¢) W, =5 Cv? = C¢?

As for particles, we require a model that treats flux and conjugate momentum on equal footing.

Lagrangian L((,b, b; t) = —; CHp? —W;(¢p) +j(t)¢

Conjugate momentum q = L Ch= ¢ :—zq contribution of the current

d F
¢ generator

Hamiltonian of the system H(q, ¢;t) = 2—1Cq2 + W, (@) — j(t)p

Energy
stored in the circuit ‘o




Hamiltonian Formulation

A Yic
Energy stored Energy stored
in the nonlinear inductor in the capacitor
v c—— (H)iw 1
W = Wi (¢) Wc:ECUZZEC(pZ

Hamiltonian of the system H(q, ¢;t) =2—1Cq2 + W, (@) —j(t)p

Fundamental property of the Hamiltonian

dH 0H
dt ot



Hamiltonian Formulation

2, -

Energy stored Energy stored
in the nonlinear inductor in the capacitor
v c—— (1)iw ;

1 .
— 2 _ 2
w; = Wi (¢) We=7Cv"=50C¢

Hamiltonian of the system H(q, ¢;t) = 2—1C q% + W;(¢)

Fundamental property of the Hamiltonian

dH P _
E—Olf](t)—o

When j(t) = 0 the Hamiltonian is a constant of motion: in this case it coincides with the energy stored in the circuit,
which is conserved because the circuit is isolated.



Hamiltonian Formulation

3 -

Energy stored Energy stored
in the nonlinear inductor in the capacitor
v c—— (Hiow |

1 .
W, = W (¢) W, =5 Cv? = C¢?

Hamiltonian of the system H(q, ¢;t) =2—1Cq2 + W, (@) —j(t)p

As for the particle, the Hamiltonian plays a fundamental role when the circuit operate in the quantum regime. The
guantum state of the circuit is governed by Schrodinger equation, in which the Hamiltonian pays a fundamental rule.
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Hamiltonian Formulation

+ : + Y Le
Energy stored Energy stored
in the nonlinear inductor in the capacitor
v c (T Jj(@®) R
WI:WI(¢) WC:ECU :ECd)
Hamiltonian of the system H(q, ¢;t) =2—1Cq2 + W, (@) —j(t)p
' _ 177 aq’ 17 m” State equation
1T T ag T e




Electron in 1D Potential Well Versus Superconducting Circuit

Classic Electron in 1D potential well Classic Superconducting circuit
Canonically conjugate variables (x, p) Canonically conjugate variables (¢, q)
1 2 1 2 .
H(p,x;t) = 5—p° + Wo(x) — F(t)x H(q, ¢;t) = -q* + Wi (¢) —j(O)¢
2m, 2C
Hamilton Equations Hamilton Equations
) [ 5 oH
X = — - —
§ dp § dq
. __oH . OH
P T 17 T3¢




State in Classical Physics

4 porq)

The set of canonically conjugated variables (x,p) or (¢,q) describe the state of
the system.

X (;r o)

i. The state space is a linear vector space.
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State in Classical Physics

The set of canonically conjugated variables (x,p) or (¢,q) describe the state of
the system.

i. The state space is a linear vector space.

ii. The state variables can be measured simultaneously with infinite precision.

4 porq)

X (;r o)

76



State in Classical Physics

4 porq)

The set of canonically conjugated variables (x,p) or (¢,q) describe the state of
the system.

X (;r o)

i. The state space is a linear vector space.

ii. The state variables can be measured simultaneously with infinite precision.

iii. The specification of the state variables at any time t uniquely determines the values of all the physical variables
of the system at the same time: they are fundamental physical variables of the system.

77



State in Classical Physics

4 porq)

The set of canonically conjugated variables (x,p) or (¢,q) describe the state of
the system.

X (;r o)

i. The state space is a linear vector space.

ii. The state variables can be measured simultaneously with infinite precision.

iii. The specification of the state variables at any time t uniquely determines the values of all the physical variables
of the system at the same time: they are fundamental physical variables of the system.

iv. The evolution of the state is deterministic.
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Circuit with Two Degrees of Freedom

[

+ +

o () bl o e XK a0 (])

This system has two degrees of freedom: we chose ¢,- and ¢, as degrees of freedom.

S.E. Rasmussen et al., Superconducting Circuit Companion—an Introduction with Worked Examples, PRX Quantum 2, 040204, 2021.

A. Ciani, D. P. DiVincenzo, B. M. Terhal, Lecture Notes on Quantum Electrical Circuits, 2024, arXiv:2312.05329.



Lagrangian

. : |
L(r s b s t) = |5 G2 -

1 1 . 1 . :
02+ (O ¢y | + |5 CebF = Wy (@0 + e (©) | +5 Gy - 60)°
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Canonically Conjugate Variables

o () oL o v X T 6 o

B oL —(1+Cg)Q CgQ
Qr—agbr— Cr r Ct t

oL C, C,

- +(1+—)
CIt a¢t CrQr Ct Qt

q, is canonical conjugate to ¢,., and g, is canonical conjugate to ¢;.



Capacitive two — ports potential coefficients

i@ (

Je (t) (

C,+C C, +C C
g T g t 9
pT: C*z ’pt: C*z ’pm:C_*Z

C2 = CyCr + C,.Cy + CyCy



Hamiltonian

o () oL o v X T 6 o

P : r . .
H(@r br Qe pis 1) = 50—+ 57 OF +50— + EjlL = cos(2mep/ o))+ =Ury + Jede)

1
Crr = 1/pr, E; = 1D /21, Cey = 1/p¢, Cy :p_

m



Circuit with Transmission Lines

|
|
-

<> >< Transmission line ><

_‘

B. Yurke and J. S. Denker, Quantum network theory, Phys. Rev. A, 29 (1984).

U. Vool, M. Devoret, Introduction to quantum electromagnetic circuits, Int. J. Circ. Theor. Appl. 2017
C. Forestiere and G. Miano, A 6-free approach to quantization of transmission lines connected to lumped circuits, Phys. Scr. 99, 2024
C. Forestiere, G. Miano, Two-port quantum model of finite-length transmission lines coupled to lumped circuits, Physical Review A, 109, 2024.



