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2.1.1 A Look to Quantum Mechanics: Some fundamental concepts

3
C. Cohen-Tannoudji, B. Diu and F. Laloë,  Quantum Mechanics, vol. I, 2nd ed., Wiley-VCH, 2019.



Electron in 1D Potential Well Versus Superconducting Circuit

𝐻 𝑞, 𝜙; 𝑡 =
1
2𝐶

𝑞! +𝑊" 𝜙 − 𝑗 𝑡 𝜙𝐻 𝑝, 𝑥; 𝑡 =
1
2𝑚#

𝑝! +𝑊$ 𝑥 − 𝐹 𝑡 𝑥

Canonically conjugate variables 𝑥, 𝑝 Canonically conjugate variables 𝜙, 𝑞	

𝑗(𝑡)𝐶𝜙

+

−

𝑞

Electron in a 1D potential well under the action 
of an external time-varying electric field

𝑝

𝑥

External electric 
field 𝑚#

Superconducting 
nonlinear circuit driven by a current source

Hamiltonian Hamiltonian
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We now introduce fundamental concepts of quantum mechanics by referring to the electron in 1D potential 
well, the extension to the superconducting circuit with one degree of freedom is immediate



Physical Quantities

Physical Quantities are properties that can be measured, in principle, with infinite precision:

- particle position;
- particle linear momentum;
- particle  energy;
- ….

𝑝

𝑥

External electric 
field 𝑚#
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Measurement in Quantum Mechanics

“By measurement, in quantum mechanics, we understand any process of interaction between classical
objects (apparatus) and quantum objects, occurring apart from and independently of any observer.”
(L. D. Landau, E. M. Lifshitz, Quantum Mechanics).
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The quantum system and the
measuring apparatus form an
isolated system.

Conservation of linear momentum,
angular momentum and energy
also holds for such a system: it is
only consequence of time
homogeneity, space homogeneity
and space isotropy, respectively.

The changes in linear momentum,
angular momentum and energy of the
measuring apparatus allows one to
infer the change in linear momentum,
angular momentum and energy of
micro - particles.



Classical Mechanics

In classical mechanics the values that physical quantities assume belong to continuum sets.

7



Quantum Mechanics

Ø the particle position assumes values belonging to the interval (−∞,+∞) continuum spectrum

Ø the particle linear momentum assumes values belonging to the interval (−∞,+∞) continuum spectrum

Ø the particle energy can assume values belonging to a discrete set 𝐸%, 𝐸&, 𝐸!, … 	discrete	spectrum

In quantum mechanics the values of physical quantities can belong to discrete sets.

𝑝

𝑥

External electric 
field 𝑚#
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Fundamental Physical Quantities

In this toy problem, the degree of freedom of the system is the position of the particle and the linear
momentum is the conjugate momentum: all the other physical quantities can be obtained from them.

𝑝

𝑥

External electric 
field 𝑚#
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Compatible and Incompatible Physical Quantities

In classical mechanics all the physical
quantities can, in principle, be
measured simultaneously with infinite
precision.

Quantum mechanics sets a limit to
the precision with which the physical
quantities can be measured
simultaneously.

In Quantum Mechanics two physical quantities are said to be compatible if they
can simultaneously be measured with any precision, otherwise they are said to be
incompatible.

𝑝

𝑥

External electric 
field 𝑚#
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Compatible and Incompatible Physical Quantities

Ø The position 𝑥 and the conjugated linear momentum 𝑝 are incompatible according to the Heisenberg’s
uncertainty relations.

Ø Canonically conjugate variables are always incompatible, while different degrees of freedom are
compatible with one another.

Ø …

𝑝

𝑥

External electric 
field 𝑚#
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Complete Set of Compatible Physical Quantities

A complete set of compatible physical variables is the maximal set of independent and compatible
physical quantities of the system.

𝑝

𝑥

External electric 
field 𝑚#

In the toy problem we have considered, a complete set of compatible physical quantities is composed by
only one quantity: the position of the electron or the linear momentum or the energy (we are disregarding
the spin degree of freedom).
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State

t = t0

t = t1

B

A

The term state has various, more specific meanings in classical mechanics and in quantum mechanics,
but all include the notion that a knowledge of the state is sufficient to make predictions about the future
behavior of the system:

known the state of the system at time 𝑡% and the laws that govern it, the evolution of the state of the
system is uniquely determined for 𝑡 > 𝑡%	(Principle of Causality).
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We must distinguish between causal and deterministic !!!

Classical Mechanics is causal and deterministic, while Quantum Mechanics is causal, but it is not 
deterministic.



In classical mechanics the state coincides with the fundamental physical quantities of the particle.

State space Space of the physical quantities

Deterministic 
correspondence

State in Classical Mechanics
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What makes Classical Mechanics deterministic is that the knowledge of the state also determines all 
possible physical quantities precisely.



State in Quantum Mechanics

In quantum mechanics the relationship between the state and the physical quantities is much less direct:

State space Space of physical quantity

Probability Distribution Function 𝑉

the state of the particle ⟩|𝐴 does not determine the values of the physical quantity 𝑉, but only the probabilities
𝑃' 𝑣% , 𝑃' 𝑣& , 𝑃' 𝑣! , … of obtaining in a measurement the values 𝑣%, 𝑣&, 𝑣!, … (we are considering a
physical quantity with discrete spectrum)

v0
v1

⟩|𝐴
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𝑃' 𝑣% + 𝑃' 𝑣& + 𝑃' 𝑣! +⋯ = 1



State in Quantum Mechanics

In quantum mechanics the relationship between the state and the physical quantities is much less
direct:

State space Space of physical quantity

Probability Distribution Function 𝑉

the state of the particle ⟩|𝐴 does not determine the values of the physical quantity 𝑉, but only the probabilities
𝑃' 𝑣% , 𝑃' 𝑣& , 𝑃' 𝑣! , … of obtaining in a measurement the values 𝑣%, 𝑣&, 𝑣!, … (we are considering a
physical quantity with discrete spectrum)

v0
v1

𝑃' 𝑣% + 𝑃' 𝑣& + 𝑃' 𝑣! +⋯ = 1

⟩|𝐴
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In other words, if you know the state, you can then predict what the statistics of the result of repeated trials of
measurement of a particular physical property will be. You will have perfectly determinate statistical
predictions but no longer individual predictions.



State in Quantum Mechanics

𝑃' 𝑣% + 𝑃' 𝑣& + 𝑃' 𝑣! +⋯ = 1

State space

Probability Distribution Function

Space of physical quantity

V

Ww0 w1

𝑃' 𝑤% + 𝑃' 𝑤& + 𝑃' 𝑤! +⋯ = 1

𝑃' 𝑣( 	is the probability that the measurement of
𝑉	when the particle is in the quantum state ⟩|𝐴
yields the value 𝑣(,

𝑃' 𝑤( 	is the probability that the measurement of
W	when the particle is in the quantum state ⟩|𝐴
yields the value 𝑤(,

𝑃' 𝑣% , 𝑃' 𝑣& , 𝑃' 𝑣! , … ⇔ 𝑃' 𝑤% , 𝑃' 𝑤& , 𝑃' 𝑤! , …
ℱ

⟩|𝐴
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Eigenstates of a Physical Quantity

There exist states in which the measurement of a complete set of compatible physical quantities gives
certain values: they are the so-called eigenstates of the complete set of compatible physical quantities.

State space

ei
ge

ns
ta
te

Space of physical quantity

V

vn

“eigenstate” “eigenvalue”

v0
v1

⟩|𝑉(

⟩|𝑉%

⟩|𝑉&

⟩|𝑉( → 𝑣(
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⟩|𝑉!



xx=0 xA xA + Δx 

Let us indicate with:

Ø ⟩|𝐴 the eigenstate of the particle in which the measurement of the position gives for certain the result
(xA, xA + Δx);

Superposition of States

Electron with one Degree of Freedom (we are disregarding the spin)
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Let us indicate with:

Ø ⟩|𝐴 the eigenstate of the particle in which the measurement of the position gives for certain the result
(xA, xA + Δx);

Ø ⟩|𝐵 the eigenstate of the particle in which the measurement of the position gives for certain the result
(xB, xB + Δx).

Superposition of States

xx=0xB + Δx xB 

Electron with one Degree of Freedom (we are disregarding spin)
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Let us indicate with:

Ø ⟩|𝐴 the eigenstate of the particle in which the measurement of the position gives for certain the result
(xA, xA + Δx);

Ø ⟩|𝐵 	the eigenstate of the particle in which the measurement of the position gives for certain the result
(xB, xB + Δx).

There exist states ⟩|𝐴𝐵 in which the measurement of the position gives some time the result (xA, xA + Δx) 
and sometime the results (xB, xB + Δx) according with a certain probability law:
states ⟩|𝐴𝐵 are represented through a “linear superposition” of the eigenstates ⟩|𝐴 and ⟩|𝐵 . The relative
weights in the superposition are related to the corresponding probabilities.

Superposition of States

xx=0 xA xA + Δx xB + Δx xB 

Electron with one Degree of Freedom (we are disregarding spin)
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Incompatible Physical Quantities

Incompatible physical quantities have different sets of eigenstates !!!

State space

ei
ge

ns
ta
te

Space of physical quantities

V

W

22



Measurement and Collapse

State space Space of physical variables

V

“A measurement always causes the system to jump into an eigenstate of the dynamical variable that is
being measured, the eigenvalue of this eigenstate belongs to being equal to the result of the
measurement.” (P.A.M. Dirac, The Principles of Quantum Mechanics)

v0

⟩|𝐴

23

The system is in the state ⟩|𝐴 and we measure the observables V.



State space Space of physical variables

V

v0

Quantum Collapse

This is an irreversible process !!!

⟩|𝐴
⟩|𝑉%

⟩|𝐴 ⟩|𝑉%

24

The system is in the state ⟩|𝐴 and we measure the observables V.

Measurement and Collapse

measurement

collapse



2.1.2 A Look to Quantum Mechanics: Postulates

25
C. Cohen-Tannoudji, B. Diu and F. Laloë,  Quantum Mechanics, vol. I, 2nd ed., Wiley-VCH, 2019.



Quantum Mechanic Postulates

𝑝

𝑥

External electric 
field 𝑚#

We now give a look to the Postulates of Quantum Mechanics by referring to the toy mechanical system (for our
purpose, we disregard the intrinsic angular momentum of the electron). The extension to the superconducting
circuit with one degree of freedom is immediate.

For the sake of clarity, we use directly the so-called x-representation, that is, we use as basis for the state space of
the particle the eigenstates of its position.

26



scalar product
between two states

norm of the state

First Postulate: State Space

𝜓 = 𝜓 𝜓 where 𝜑 𝜙 = ∫)*
+*𝑑𝑥 𝜑∗ 𝑥 𝜙 𝑥

State Space of the System. At any fixed time 𝑡, the state of the particle is represented by a square
integrable complex function of the position and time 𝜓 = 𝜓 𝑥; 𝑡 , the so called wave function, with the
constraint 𝜓 =1. The state space is a Hilbert space, which we denote with 𝑆.
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The wavefunction contains all the information relevant to the physical state of the particle.

This postulate implies the Superposition of States: 
a linear combination of states of the system is another state of the system.

First Postulate: State Space

State Space of the System. At any fixed time 𝑡, the state of the particle is represented by a square
integrable complex function of the position and time 𝜓 = 𝜓 𝑥; 𝑡 , the wave function, with 𝜓 =1. The
state space is a Hilbert space, which we denote with 𝑆.
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Observables. Every measurable physical quantity V is described by a self−adjoint linear operator U𝑉	acting
on the wave function,	called observable and denoted by U𝑉.

Second Postulate: Observables

U𝑉𝜑 𝑥 = 𝜒 𝑥 	

Unlike classical mechanics, quantum physics describes in a fundamentally different manner the state of a
system and its physical variables:

a state is represented by a wavefunction belonging to a Hilbert space S, and a physical variable is
represented by a self - adjoint linear operator defined in S.
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Hermitian Adjoint Operator

The Hermitian adjoint operator U𝑂-of the linear operator U𝑂	satisfies, by definition, the relation

U𝑂-𝜑 𝜙 = 𝜑 U𝑂𝜙 , 

that is,

∫)*
+*𝑑𝑥 U𝑂-𝜑 𝑥

∗
𝜙 𝑥 = ∫)*

+*𝑑𝑥 𝜑 𝑥 ∗ U𝑂𝜙 𝑥 .

The linear operator U𝑂 is self-adjoint if its Hermitian adjoint operator U𝑂- acts in the same space 𝑆	 and 

U𝑂- = U𝑂.
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Eigenvalues and Eigenfunctions of a Self-Adjoint Operator

The eigenvalues of a linear self-adjoint operator are real and the eigenfunctions with different eigenvalues 
are orthonormal.

U𝑉𝜑. 𝑥 = 𝑣𝜑. 𝑥

eigenfunction

eigenvalue

U𝑉𝜑( 𝑥 = 𝑣(𝜑( 𝑥

Ø Discrete spectrum

𝑣%, 	 𝑣& ,	 𝑣!, …

𝜑% 𝑥 , 𝜑& 𝑥 , 𝜑! 𝑥 ,   …

𝑣/ ≠ 𝑣( 𝜑/ 𝜑/ = 𝛿/(
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Eigenvalues and Eigenfunctions of a Self-Adjoint Operator

eigenfunction

eigenvalue

U𝑉𝜑. 𝑥 = 𝑣𝜑. 𝑥

Ø Continuum spectrum

𝜑. 𝜑.! = 𝛿 𝑣 − 𝑣′

𝑎 ≤ 𝑣 ≤ 𝑏

𝜑. 𝑥

U𝑉𝜑. 𝑥 = 𝑣𝜑. 𝑥

The eigenvalues of a linear self-adjoint operator are real and eigenfunctions with different eigenvalues are 
orthonormal.
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Values of Physical Quantities and Eigenstates. The only possible results of the measurement of V are the
eigenvalues of the corresponding observable U𝑉	,

and the eigenfunction 𝜑. 𝑥 	associated to the eigenvalue 𝑣	 is the corresponding eigenstate.

Third Postulate: Values of Physical Quantities and Eigenstates

When the system is in the state 𝜑. 𝑥 	the measurement of V gives certainly the value 𝑣.

U𝑉𝜑. 𝑥 = 𝑣𝜑. 𝑥 ,
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Third Postulate: Values of Physical Quantities and Eigenstates

When the system is in the state 𝜑. 𝑥 	the measurement of V gives certainly the value 𝑣.

34

Ø To compatible physical quantities correspond commuting observables.

Ø To incompatible physical quantities correspond non commuting observables.

Values of Physical Quantities and Eigenstates. The only possible results of the measurement of V are the
eigenvalues of the corresponding observable U𝑉	,

and the eigenfunction 𝜑. 𝑥 	associated to the eigenvalue 𝑣	 is the corresponding eigenstate.

U𝑉𝜑. 𝑥 = 𝑣𝜑. 𝑥 ,
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Correspondence Principle

Quantization rules allow to construct, for any physical quantity V, already defined in classical physics, the
observable U𝑉, which describes it in quantum physics.

They are obtained by the Correspondence Principle: Quantum Mechanics must reduce to Classical
Mechanics when the action is much greater than ℏ, that is, as the quantum of action ℏ goes to zero.



Observables

Physical quantity Classical Observable (in the x – representation)

Particle Position

Particle Linear Momentum

fu
nd

am
en

ta
l

U𝑋 = 𝑥

U𝑃 =
ℏ
𝑖
𝜕
𝜕𝑥

𝑝

𝑥

U𝑋, U𝑃 ≡ U𝑋 U𝑃 − U𝑃 U𝑋 = 𝑖ℏ

Fundamental commutation relation

36

To incompatible physical quantities correspond non commuting observables.

This commutation relation implies the Heisenberg’s uncertainty relation and vice versa.



Observables

Physical quantity Observable (in the x – representation)

Particle Position

Particle Linear Momentum

Particle Hamiltonian

fu
nd

am
en

ta
l

Particle Kinetic energy 

𝐻 =
1
2𝑚#

𝑝! +𝑊$ 𝑥 − 𝐹 𝑡 𝑥 c𝐻 = −
ℏ!

2𝑚#

𝜕!

𝜕𝑥!
+𝑊$ 𝑥 − 𝐹 𝑡 𝑥

Particle Potential energy

U𝑋 = 𝑥

U𝑃 =
ℏ
𝑖
𝜕
𝜕𝑥

𝐾 =
1
2𝑚#

𝑝!

𝑝

𝑥

𝑊$ = 𝑊$ 𝑥

c𝐾 = −
ℏ!

2𝑚#

𝜕!

𝜕𝑥!

c𝐻 = 𝑊$ 𝑥

Particle energy 𝐸 =
1
2𝑚#

𝑝! +𝑊$ 𝑥 U𝐸 = −
ℏ!

2𝑚#

𝜕!

𝜕𝑥!
+𝑊$ 𝑥

Classical
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Position Observable

U𝑋 = 𝑥

𝑥𝜑0" 𝑥 = 𝑥%𝜑0" 𝑥Eigenvalue problem

−∞ < 𝑥% < +∞

𝜑0" 𝑥 = 𝛿 𝑥 − 𝑥%

Continuous spectrum

Eigenstates (in Rigged Hilbert space)

38



Linear Momentum Observable

U𝑃 =
ℏ
𝑖
𝜕
𝜕𝑥

ℏ
𝑖
𝜕
𝜕𝑥
𝜑1 𝑥 = 𝑝𝜑1 𝑥

Eigenvalue problem

−∞ < 𝑝 < +∞

𝜑1 𝑥 =
1
2𝜋ℏ

𝑒210/ℏ

Continuous spectrum

Eigenstates (in Rigged Hilbert space) de Broglie matter wave function 
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de Broglie wavelength 𝜆5 = 2𝜋 ℏ
1

If the characteristic length of the system is of the order of de Broglie wavelength of the particle 
quantum mechanics effects are important. 



Energy Observable

U𝐸 = −
ℏ!

2𝑚#

𝜕!

𝜕𝑥!
+𝑊$ 𝑥

−
ℏ!

2𝑚#

𝑑!

𝑑𝑥!
+𝑊$ 𝑥 𝜑6 𝑥 = 𝐸𝜑6 𝑥Eigenvalue problem

The spectrum may be discrete and/or continuous, it depends on the potential energy 𝑊$ 𝑥 .
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Energy Observable

𝐸( = ℏ𝜔% 𝑛 + &
!

with 𝑛 = 0,1,2, … and 𝜔% = 𝑘%/𝑚#

Harmonic oscillator 𝑊$ 𝑥 = &
!
𝑘%𝑥!

𝑊! 𝑥

(𝐸
"
−
𝐸 #
)i

n 
un

its
 o

f ℏ
𝜔
#

𝑥 = 0 𝑥

𝜑# 𝑥

𝜑$ 𝑥

𝜑% 𝑥

𝜑& 𝑥

41

The distance between the energy levels is uniform.

The eigenfunctions can be represented analytically 
through Hermite polynomials and the Gaussian function.



Energy Observable

𝐸( = ℏ𝜔% 𝑛 + &
!

with 𝑛 = 0,1,2, … and 𝜔% = 𝑘%/𝑚#

Harmonic oscillator 𝑊$ 𝑥 = &
!
𝑘%𝑥!

𝑊! 𝑥

(𝐸
"
−
𝐸 #
)i

n 
un

its
 o

f ℏ
𝜔
#

𝑥 = 0 𝑥

Anharmonic oscillator 𝑊$ 𝑥 = &
!
𝑘%𝑥! + 𝜎7𝑥7 + 𝜎8𝑥8 +⋯

(𝐸
"
−
𝐸 #
)i

n 
un

its
 o

f ℏ
𝜔
#

𝑥 = 0 𝑥

𝑊! 𝑥

𝜑# 𝑥

𝜑$ 𝑥

𝜑% 𝑥

𝜑& 𝑥

𝜑# 𝑥

𝜑$ 𝑥

𝜑% 𝑥

42

The distance between the energy levels is uniform. The distance between the energy levels is not uniform.



x
𝐸%

𝐸&
𝐸!discrete

spectrum

Bound eigenstates of the particle: are the energy
eigenstates 𝜑% 𝑥 , 𝜑& 𝑥 , …. corresponding to the
discrete eigenvalues 𝐸%, 𝐸&, … . They are square-
integrable functions, thus lim

0→±*
𝜑( 𝑥 = 0.

43

regularity conditions for                 x→ ±∞

−∞ < x < +∞−
ℏ!

2𝑚#

𝑑!

𝑑𝑥!
+𝑊$ 𝑥 𝜑6 𝑥 = 𝐸𝜑6 𝑥

Energy spectrum: bound and unbound eigenstates

𝑊%

𝑊$ 𝑥



x

𝑊$ 𝑥

𝐸%
𝐸&

𝐸!discrete
spectrum

𝑊%

44

regularity conditions for                 x→ ±∞

−∞ < x < +∞−
ℏ!

2𝑚#

𝑑!

𝑑𝑥!
+𝑊$ 𝑥 𝜑6 𝑥 = 𝐸𝜑6 𝑥

Energy spectrum: bound and unbound eigenstates

Unbound eigenstates

lim
0→±*

𝜑6 𝑥 = 𝜑% 𝐸 𝑒±21 6 0/ℏ  𝐸$ < 𝐸 < 𝐸;

𝐸 𝐸$ = 𝑊%, 𝐸; = ∞

𝑝 =
𝐸
2𝑚#

For 𝑥 → ±∞ the unbounded eigenstates behave as the
de Broglie matter waves. 



Born rule: Case of a non-degenerate discrete spectrum. When the physical quantity V is measured with the
particle in the normalized state 𝜓 𝑥; 𝑡 , the probability 𝑃' 𝑣(|𝜓 	of obtaining the value 𝑣( is given by

𝑃' 𝑣(|𝜓 = 𝜑( 𝜓 ! = r
)*

+*
𝑑𝑥𝜑(∗ 𝑥 𝜓 𝑥; 𝑡

!

where 𝜑( 𝑥 is the normalized eigenket corresponding to the eigenvalue 𝑣(.

Fourth Postulate: Born rule

U𝑉𝜑( 𝑥 = 	𝑣( 𝜑( 𝑥

𝜑/ 𝜑( = 𝛿/(
The observable U𝑉 has discrete spectrum 
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Born rule: Case of a non-degenerate discrete spectrum. When the physical quantity V is measured with the
particle in the normalized state 𝜓 𝑥; 𝑡 , the probability 𝑃' 𝑣(|𝜓 	of obtaining the value 𝑣( is given by

𝑃' 𝑣(|𝜓 = 𝜑( 𝜓 ! = r
)*

+*
𝑑𝑥𝜑(∗ 𝑥 𝜓 𝑥; 𝑡

!

where 𝜑( 𝑥 is the normalized eigenket corresponding to the eigenvalue 𝑣(.

Fourth Postulate: Born rule

Let us represent the wave function 𝜓 𝑥; 𝑡 through the eigenfunctions of the energy observables 𝜙( 𝑥 ,

𝜓 𝑥; 𝑡 = s
(

𝑐( 𝑡 𝜙( 𝑥 .

By using the orthonormality of the energy eigenfunctions we immediately obtain

𝑃6 𝐸(|𝜓 = 𝑐( 𝑡 !

where 𝑐% 𝑡 ! + 𝑐& 𝑡 ! + 𝑐! 𝑡 ! +	… = 1 because 𝜓 =1.
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Fourth Postulate: Born rule

Fourth Postulate: Case of a non-degenerate continuous spectrum. When the physical quantity V is measured
on a system in the normalized state 𝜓 𝑥; 𝑡 the probability 𝑑𝑃' 𝑣|𝜓 	of obtaining a result included between 𝑣
and	𝑣 + 𝑑𝑣	is	equal	to

𝑑𝑃' 𝑣|𝜓 = 𝜑. 𝜓 !d𝑣 = ∫)*
+*𝑑𝑥𝜑.∗ 𝑥 𝜓 𝑥; 𝑡

!
𝑑𝑣

where 𝜑. 𝑥 is the normalized eigenket corresponding to the eigenvalue 𝑣; 𝜑. 𝜓 ! is a density of
probability.

z𝐴	𝜑. 𝑥 = 𝑣|	𝜑. 𝑥

𝜑.! 𝜑( = 	𝛿 𝑣< − 𝑣
The observable U𝑉 has continuous spectrum 
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Fourth Postulate: Born rule

Fourth Postulate: Case of a non-degenerate continuous spectrum. When the physical quantity V is measured
on a system in the normalized state 𝜓 𝑥; 𝑡 the probability 𝑑𝑃' 𝑣|𝜓 	of obtaining a result included between 𝑣
and	𝑣 + 𝑑𝑣	is	equal	to

𝑑𝑃' 𝑣|𝜓 = 𝜑. 𝜓 !d𝑣 = ∫)*
+*𝑑𝑥𝜑.∗ 𝑥 𝜓 𝑥; 𝑡

!
𝑑𝑣

where 𝜑. 𝑥 is the normalized eigenket corresponding to the eigenvalue 𝑣; 𝜑. 𝜓 ! is a density of
probability.

If 𝑉is the position of the particle, we have 𝜑0" 𝑥 = 𝛿 𝑥 − 𝑥% ,	therefore

𝑑𝑃0 𝑥%|𝜓 = 𝜓 𝑥%; 𝑡 !d𝑥

with 𝜓 =1, therefore 𝜓 𝑥%; 𝑡 !d𝑥 is the probability of obtaining in the measurement of the particle position
𝑥 a value between 𝑥% and 𝑥% + 𝑑𝑥.
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Fourth Postulate: Born rule

Fourth Postulate: Case of a non-degenerate continuous spectrum. When the physical quantity V is measured
on a system in the normalized state 𝜓 𝑥; 𝑡 the probability 𝑑𝑃' 𝑣|𝜓 	of obtaining a result included between 𝑣
and	𝑣 + 𝑑𝑣	is	equal	to

𝑑𝑃' 𝑣|𝜓 = 𝜑. 𝜓 !d𝑣 = ∫)*
+*𝑑𝑥𝜑.∗ 𝑥 𝜓 𝑥; 𝑡

!
𝑑𝑣

where 𝜑. 𝑥 is the normalized eigenket corresponding to the eigenvalue 𝑣; 𝜑. 𝜓 ! is a density of
probability.

If 𝑉is the linear momentum of the particle, we have 𝜑1 𝑥 = &
!=ℏ

𝑒210/ℏ therefore

𝑑𝑃1 𝑝|𝜓 = Π 𝑝; 𝑡 !d𝑝

where Π 𝑝; 𝑡 = &
!=ℏ∫)*

+*𝑑𝑥𝑒)210/ℏ 𝜓 𝑥; 𝑡 	 (it is the Fourier transform of the wavefunction 𝜓 𝑥; 𝑡 ) and

∫)*
+*𝑑𝑝 Π 𝑝; 𝑡 ! = 1.
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Expectation value of 𝑽 (probabilistic expected value of the measurement) with the particle in the state 𝜓 𝑥; 𝑡

𝑽 𝝍 =s
(

𝑃' 𝑣(|𝜓 𝑣( =s
(

𝜑( 𝜓 ! 𝑣( =s
(

𝜓 	𝜑( 𝑣( 	𝜑( 𝜓 = 𝝍 c𝑽𝝍

Born rule: Case of a non-degenerate discrete spectrum. When the physical quantity V is measured with the
particle in the normalized state 𝜓 𝑥; 𝑡 , the probability 𝑃' 𝑣(|𝜓 	of obtaining the value 𝑣( is given by

𝑃' 𝑣(|𝜓 = 𝜑( 𝜓 ! = r
)*

+*
𝑑𝑥𝜑(∗ 𝑥 𝜓 𝑥; 𝑡

!

where 𝜑( 𝑥 is the normalized eigenfunction corresponding to the eigenvalue 𝑣(.

Expectation Value of Observables with Discrete Spectrum
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Statistics

Expectation value of 𝑉 with the particle in the state 𝜓 𝑥; 𝑡

𝑉 ? = 𝜓 U𝑉𝜓

Standard deviation of 𝑉 with the particle in the state 𝜓 𝑥; 𝑡

∆𝑉 ?= 𝑉! ? − 𝑉 ?
!

Heisenberg’s uncertainty relation

Δ𝑥? Δ𝑝? ≥
ℏ
!

It is a direct consequence of the commutation relation U𝑋 U𝑃 − U𝑃 U𝑋 = 𝑖ℏ and vice versa.
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Statistics of Energy Eigenstates
Harmonic oscillator 𝑊$ 𝑥 = &

!
𝑘%𝑥!

𝑊! 𝑥

(𝐸
"
−
𝐸 #
)i

n 
un

its
 o

f ℏ
𝜔
#

𝑥 = 0 𝑥

Anharmonic oscillator 𝑊$ 𝑥 = &
!
𝑘%𝑥! + 𝜎7𝑥7 + 𝜎8𝑥8 +⋯

(𝐸
"
−
𝐸 #
)i

n 
un

its
 o

f ℏ
𝜔
#

𝑥 = 0 𝑥

𝑊! 𝑥

𝜑# 𝑥

𝜑$ 𝑥

𝜑% 𝑥

𝜑& 𝑥

𝜑# 𝑥

𝜑$ 𝑥

𝜑% 𝑥

Ø 𝑥 @# = 0, 𝑝 @# = 0;
Ø ∆𝑥@#= 𝑛 + 1/2𝑥A, 𝑥A = ℏ/𝑚#𝜔% 
Ø ∆𝑝@#= 𝑛 + 1/2𝑝A , 𝑝A = 𝑥A 𝑚#𝜔%
Ø ∆𝑥@# ∆𝑝@#= 𝑛 + 1/2 ℏ

Ø 𝑥 @# = 0, 𝑝 @# = 0 for symmetric potential energies.
Ø ∆𝑥@# 	depends on 𝑊$ 𝑥 ; 
Ø ∆𝑝@#depends on 𝑊$ 𝑥 ;
Ø ∆𝑥@# ∆𝑝@#≥ ℏ/2
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Fifth Postulate: Random Wave Function Collapse

Wave function collapse: Case of non – degenerate discrete spectrum. If the measurement of the physical
quantity V with the particle in the state 𝜓 𝑥; 𝑡 gives the result 𝑣(	the state of the particle immediately
after the measurement is the eigenstate 𝜑( 𝑥 associated with the eigenvalue 𝑣(	,

𝜓 𝑥; 𝑡 ⇒
.# 𝜑( 𝑥 .

0 t1
t

𝜓 𝑥; 𝑡

measurement of V gives
the result 𝑣(

if 𝑣(	is	not	degenerate

𝜓 𝑥; 𝑡&) 𝜓 𝑥; 𝑡&+ = 𝜑( 𝑥𝜓 𝑥; 𝑡 = 0

t2

𝜓 𝑥; 𝑡
𝜓 𝑥; 𝑡!
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Sixth Postulate: Time Evolution of the System

Schr𝐨̈dinger equation. The time evolution of the state 𝜓 𝑥; 𝑡 	is governed by the Schrödinger equation

𝑖ℏ B?
BC
= c𝐻 𝑡 𝜓

where c𝐻 𝑡 	is the Hamiltonian observable,

c𝐻 𝑡 = − ℏ$

!/%

B$

B0$
+𝑊$ 𝑥 − 𝐹 𝑡 𝑥,

that is,

𝑖ℏ B?
BC
= − ℏ$

!/%

B$?
B0$

+ 𝑊$ 𝑥 𝜓 − 𝐹 𝑡 𝑥 𝜓.

The Schrödinger equation is solved with given initial and boundary conditions for the wavefunction 𝜓 𝑥; 𝑡 .

According to the Principle of Causality



55

Seventh Postulate: Identical Particles

Seventh Postulate: When a system includes several identical particles, only certain wavefunctions can
describe its physical states: wavefunctions are either completely symmetric or completely antisymmetric
with respect to permutation of the position of the particles, depending on the nature of the identical
particles.



56

Seventh Postulate: Identical Particles

Seventh Postulate: When a system includes several identical particles, only certain wavefunctions can
describe its physical states: wavefunctions are either completely symmetric or completely antisymmetric
with respect to permutation of the position of the particles, depending on the nature of the identical
particles.

Those particles for which the wavefunctions are symmetric are called bosons, and those for which the
wavefunctions are antisymmetric, fermions.

Electrons are fermions, Cooper pairs in low temperature superconductors behave as boson.

Fermions obey the Pauli exclusion principle: two or more identical fermion particles cannot simultaneously
occupy the same quantum state.

Bosons: two or more identical boson particles can simultaneously occupy the same quantum state.



State evolution of the 
particle

Measurement of V 
(e.g., discrete spectrum)

gives the outcome vn

t

t0

t1

57

“collapse”

probability

closed system

Schrödinger picture

State preparation of the
particle

closed system

𝜓 𝑥; 𝑡%

𝑖ℏ B?
BC
= c𝐻 𝑡 𝜓

𝜑/ 𝜓 𝑡&) !

𝜓 𝑥; 𝑡&+ = 𝜑( 𝑥

State evolution of the 
particle 𝑖ℏ B?

BC
= c𝐻 𝑡 𝜓
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Ehrenfest’s theorem

𝑝

𝑥

External electric 
field 𝑚#

Let us assume 𝜓 𝑥; 𝑡 to be highly localized: 𝜓 𝑥; 𝑡 ! takes on non-negligible values only within an interval
whose length is much smaller than the distances over which the potential energy 𝑊$ 𝑥 varies appreciably.

Then the expectation value of the position 𝑥 ? and the expectation value of the linear momentum 𝑝 ? are
approximately governed by the classical equations of motion,

𝑑
𝑑𝑡

𝑥 ? =
1
𝑚#

𝑝 ?,
D
DC

𝑝 ? ≅ − D
D0
𝑊$ 𝑥 ? + 𝐹 𝑡 .

𝜓 𝑥; 𝑡 !

𝑊$ 𝑥

𝑥 ?

∆𝑥 ?
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Ehrenfest’s theorem

𝑝

𝑥

External electric 
field 𝑚#

Let us assume 𝜓 𝑥; 𝑡 to be highly localized: 𝜓 𝑥; 𝑡 ! takes on non-negligible values only within an interval
whose length is much smaller than the distances over which the potential energy 𝑊$ 𝑥 varies appreciably.

Then the expectation value of the position 𝑥 ? and the expectation value of the linear momentum 𝑝 ? are
approximately governed by the classical equations of motion,

𝑑
𝑑𝑡

𝑥 ? =
1
𝑚#

𝑝 ?

D
DC

𝑝 ? ≅ − D
D0
𝑊$ 𝑥 ? + 𝐹 𝑡 .

In the macroscopic limit, the characteristic de Broglie wavelength of the particle is much smaller than the
distances over which the potential energy varies, and the wave packets are sufficiently short in space. This
result is very important because it shows that the equations of classical mechanics follow from the Schrödinger
equation in certain limiting conditions, which are verified for macroscopic objects.

𝜓 𝑥; 𝑡 !

𝑊$ 𝑥

𝑥 ?

∆𝑥 ?



2.2 Superconducting Quantum Circuits
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Superconductive metals

temperature

non – superconductive
metal

superconductive
metal 

𝑇A0 𝐾

Various metals become superconducting below a certain temperature 𝑇A 	(transition temperature), which
depends on the material: the resistivity drops to zero when the temperature of the sample is lowered
below 𝑇A 	.

The term “conventional superconductors” refers to those materials with	𝑇A < 25𝐾.

re
sis

tiv
ity
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T. Orlando, K. A. Delin, Foundations of Applied Superconductivity, Addison Wesley (1991).



Type - I superconductors

𝐵A

𝑇A

In Type - I superconductors, superconductivity is abruptly destroyed when the strength of the
applied magnetic field rises above a critical value 𝐵A critical	magnetic	�ield .

𝐵

𝑇
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Cooper Pairs
The free electrons (normal electrons) in the superconducting state pair together and form the Cooper pairs
(super - electrons). The electrons in a Cooper pair are bound with an energy (energy gap 2∆) that is typically of
the order of 10)7 ÷ 10)E eV for conventional superconductivity.

The electrons of a Cooper pair have opposite intrinsic angular momenta (spin), thus Cooper pairs behave as
boson particles.
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Cooper Pairs

64

The free electrons (normal electrons) in the superconducting state pair together and form the Cooper pairs
(super - electrons). The electrons in a Cooper pair are bound with an energy (energy gap 2∆) that is typically of
the order of 10)7 ÷ 10)E eV for conventional superconductivity.

The electrons of a Cooper pair have opposite intrinsic angular momenta (spin), thus Cooper pairs behave as
boson particles.

It must be supplied at least an amount of energy equal to 2∆	 to split the Cooper pair into two unbound normal
electrons and to destroy superconductivity.

Take, for instance, a superconductor maintained at a temperature considerably below 𝑇A 	, ensuring that all
electrons are paired. If we expose this material to electromagnetic radiation, the superconducting properties
should remain unchanged unless the radiation energy matches or exceeds the energy gap 2∆. For conventional
superconductors, this energy gap correlates with frequencies ranging from 100 to 1000 GHz.



Type – I  superconducting metals

Material Tc (K) 𝚫(𝒎𝒆𝑽) 𝑩𝒄(mT)

Al 1.18 0.18 10.5

In 3.41 0.54 23.0

Sn 3.72 0.59 30.5

Pb 7.20 1.35 80.0

Nb 9.25 1.50 198.0

Source: T. Orlando, K. A. Delin, Foundations of Applied Superconductivity, Addison Wesley (1991).

65

1 eV = 1.602176634×10−19 J



Superconducting LC Circuit

superconducting 
inductor

superconducting
capacitor

𝑙A ≪ 𝜆A

This system contains an enormous number of superelectrons.

Ø Superelectrons are bosons, they share the same quantum state.

Ø The characteristic wavelenght 𝜆A 	of the electromagnetic field significantly exceeds the characteristic linear
size of the system 𝑙A, thus the system behaves as it would have only one degree of freedom.

Under the above conditions the system may behave as a quantum superconducting circuit.

66

The degree of freedom of the circuit
is the magnetic flux linked with the
inductor winding (or the electric
charge stored on the capacitor
electrodes).

L C



Superconducting LC Circuit

Natural frequency of the LC circuit

Characteristic impedance

L ≈ 1 nH,                                     C ≈ 10 pF 

~1 mm

The characteristic impedance is very important because the coupling of the LC circuit with the
surrounding environment depends on it.

G"
!=
= &

!=
&
HI
= 1.69	 … GHz ⟺ 𝜆 = 18.85…	cm

𝑍% =
H
I
= 10 Ω
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Observation of macroscopic quantum phenomena in the LC circuit

Two criteria must be satisfied: 

i. the “thermal energy” of the circuit 𝑘J𝑇% must be small compared with the separation of the quantized
energy levels ℏ𝜔%, ℏ𝜔% ≫ 𝑘J𝑇%;

68

J. Legget, Macroscopic quantum systems and the quantum theory of measurement, Progress of Theoretical Physics Supplement,
1980.
J Clarke, AN Cleland, MH Devoret, D Esteve, Quantum mechanics of a macroscopic variable: the phase difference of a Josephson
junction, Science, 239, 1988.



Two criteria must be satisfied: 

i. the “thermal energy” of the circuit 𝑘J𝑇% must be small compared with the separation of the quantized
energy levels ℏ𝜔%, ℏ𝜔% ≫ 𝑘J𝑇%;

ii. the macroscopic degree of freedom of the circuit must be sufficiently decoupled from the “environment”
if the lifetime of the quantum state must be enough high.

J. Legget, Macroscopic quantum systems and the quantum theory of measurement, Progress of Theoretical Physics Supplement,
1980.
J Clarke, AN Cleland, MH Devoret, D Esteve, Quantum mechanics of a macroscopic variable: the phase difference of a Josephson
junction, Science, 239, 1988.

69

Observation of macroscopic quantum phenomena in the LC circuit



The circuit is “observed” by means of cables connecting room temperature measurement apparatus to base
temperature circuit: thermal photons propagate down the cable towards the lower temperature stage.

U. Vool, M. Devoret, Introduction to quantum electromagnetic circuits, Int. J. Circ. Theor. Appl. 2017.
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Observation of macroscopic quantum phenomena in the LC circuit

Norton equivalent one port of the environment:

𝑍 is the characteristic impedance of the cable and
𝑗(K2L# accounts for thermal photons incoming from
measurement apparatus.

The impedance 𝑍	 induces “relaxation” and the
noise current induces “decoherence”.

Z L C𝑗(K2L#



To observe quantum effects, it is required that:

i. ℏ𝜔% ≫ 𝑘J𝑇%: this assures that quantum phenomena are not masked by thermal noise;

ii. the power intensity of thermal radiation incoming from the measurement apparatus must be strongly reduced
through a series of filters to levels such that the noise photon number is much smaller than one;

iii. 𝑍 ≫ 𝑍%: the relaxation resulting from interactions with the environment happens on a much longer time scale
compared to the time scale characterizing quantum processes.

𝜔% =
1
𝐿𝐶

𝑍% =
𝐿
𝐶
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Observation of macroscopic quantum phenomena in the LC circuit

Z L C𝑗(K2L#

filter

filter



L ≈ 1 nH,                                     C ≈ 10 pF 

~1 mm

Aluminum at 20 mK
(dilution refrigerator) 

Ø Aluminum has the transition temperature of 1.1 K.

Ø Dilution refrigerator at 10 mK assures that thermal noise does not mask quantum phenomena

Ø Aluminum has a gap 2Δ ≅ 0.36 m	𝑒𝑉. Dissipation due to the breaking of Cooper pairs will begin at
frequencies greater than 2Δ /ℎ ≅ 100GHz.

Ø the power intensity of thermal radiation incoming from the measurement apparatus is strongly reduced
through a series of filters;

Ø 𝑍 ≫ 𝑍%: the relaxation resulting from interactions with the environment happens on a much longer time
scale compared to the time scale characterizing quantum processes.
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Observation of macroscopic quantum phenomena in the LC circuit



Cabled Dilution Refrigerator (cryostat)

S. Krinner et al., Engineering cryogenic setups for 100 qubit scale superconducting circuit systems, EPJ Quantum Technology, 2019. 73

Superconducting circuits operate at
temperature of 10 	÷ 20	 mK, in the
frequency range 1 ÷ 20	GHz (microwaves).

The circuits are designed in such a wave to
minimize the effects due to the interaction
with the environment.

Under these conditions the quantum
phenomena are not masked on sufficiently
long time intervals.



The Hamiltonian of the circuit is:
𝐻 𝑞, 𝜙; 𝑡 = &

!I
𝑞! +𝑊2 𝜙 − 𝑗 𝑡  𝜙.

74

The flux 𝜙 and the charge 𝑞 are canonically conjugated variables of this superconducting circuit.

j(t)

q

𝜙

+

−
𝐶

Quantization of Electrical Circuits



Under the aforementioned conditions, the passage from the classical to the quantum description is direct: the
canonically conjugated classical variables are replaced by the corresponding observables (operators),

𝑞 → �𝑞,
𝜙 → U𝜙,

and the Hamiltonian function is replaced by :

𝐻 𝜙, 𝑞; 𝑡 → c𝐻 = 𝐻 U𝜙, �𝑞; 𝑡 .
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j(t)

q

𝜙

+

−
𝐶

Quantization of Electrical Circuits

A. Ciani, D. P. DiVincenzo, B. M. Terhal, Lecture Notes on Quantum Electrical Circuits, 2024, arXiv:2312.05329.

S.E. Rasmussen et al., Superconducting Circuit Companion—an Introduction with Worked Examples, PRX Quantum 2, 040204, 2021.
U. Vool, M. Devoret, Introduction to quantum electromagnetic circuits, Int. J. Circ. Theor. Appl. 2017.



𝑞 → �𝑞,
𝜙 → U𝜙,

𝐻 𝜙, 𝑞; 𝑡 → c𝐻 = 𝐻 U𝜙, �𝑞; 𝑡 .

The state of the circuit is represented (in the 𝜙 −representation) by the wavefunction 

Ψ = Ψ 𝜙; 𝑡 .
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j(t)

q

𝜙

+

−
𝐶

Quantization of Electrical Circuits



Wave function in the flux – representation Ψ = Ψ 𝜙; 𝑡 :

Ψ 𝜙; 𝑡 !𝑑𝜙 is the probability that a measurement of 𝜙 gives at time 𝑡 a value belonging to the interval
𝜙, 𝜙 + 𝑑𝜙.
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j(t)
𝑞

𝜙

+

−

Circuit wavefunctions

𝐶



Wave function in the flux – representation Ψ = Ψ 𝜙; 𝑡 :

Ψ 𝜙; 𝑡 !𝑑𝜙 is the probability that a measurement of 𝜙 gives at time 𝑡 a value belonging to the interval
𝜙, 𝜙 + 𝑑𝜙.

Wave function in the charge – representation Σ = Σ 𝑞; 𝑡 :

Σ 𝑞; 𝑡 !𝑑𝑞 is the probability that a measurement of 𝑞 gives at time 𝑡 a value belonging to the interval
𝑞, 𝑞 + 𝑑𝑞.
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Circuit wavefunctions

Σ 𝑞; 𝑡 =
1
2𝜋ℏ

r
)*

+*
𝑑𝜙𝑒)2MN/ℏΨ 𝜙; 𝑡

j(t)
𝑞

𝜙

+

−
𝐶



For the linear LC circuit, the commutation relation

U𝜙, �𝑞 = 𝑖ℏ

can be derived from the quantization of the electromagnetic field.

j(t)𝜙

+

−

A. Widom, Quantum Electrodynamic Circuits at Ultralow Temperature, Journal Journal of Low Temperature Physics, Vol. 37, 
Nos. 3/4, 1979; A Widom, TD Clark, Quantum electrodynamic uncertainty relations, Physics Letters A, 90, 2801982.
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𝐶

𝑞

Linear LC Circuit



For this nonlinear circuit, the commutation relation

U𝜙, �𝑞 = 𝑖ℏ

can be derived from the physical model of the Josephson junction.

j(t)

+

−
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𝑞
𝜙

𝐶

Uri Vool, Michel Devoret, Introduction to quantum electromagnetic circuits, Int. J. Circ. Theor. Appl. 2017; 45:897–934.

P. W. Anderson, in Lectures on the Many-Body Problem, E. R. Caianiello, ed. (Academic Press, New York, 1964), Vol. 2, p. 113.

Nonlinear LC Circuit



In general, the conjugate observables U𝜙	and	 �𝑞 do not commutate: they verify the commutation
relation

U𝜙, �𝑞 = 𝑖ℏ.
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j(t)

q

𝜙

+

−
𝐶

Quantization of Electrical Circuits



Electron under the action of an electric field 

Commutation Relation
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The physical variables p and x
are incompatible

Fundamental Observables

Commutation Relation

𝑝 → U𝑃, 𝑥 → U𝑋

U𝑋, U𝑃 = 𝑖ℏU𝜙, �𝑞 = 𝑖ℏ

The physical variables q and 𝜙
are incompatible

Non linear “LC circuit”

Canonical conjugated physical variables (q,𝜙) Canonical conjugated physical variables (p,x) 

Fundamental Observables
𝑞 → �𝑞, 𝜙 → U𝜙

Quantum electrical circuit versus 1-D quantum electron motion

𝑝

𝑥

External electric 
field 𝑚#

j(t)

+

−

𝜙
𝑞

𝐶
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U𝑋 = 𝑥, U𝑃 = −𝑖ℏ
𝜕
𝜕𝑥

U𝜙 	= 𝜙, �𝑞 = −𝑖ℏ
𝜕
𝜕𝜙

Quantum electrical circuit versus 1-D quantum electron motion

c𝐻 = −
ℏ!

2𝐶
𝜕!

𝜕𝜙!
+𝑊" 𝜙 − 𝑗 𝑡 𝜙 c𝐻 = −

ℏ!

2𝑚#

𝜕!

𝜕𝑥!
+𝑊$ 𝑥 − 𝐹 𝑡 𝑥

Ψ = Ψ 𝜙; 𝑡 𝜓 = 𝜓 𝑥; 𝑡

𝑖ℏ
𝜕Ψ
𝜕𝑡

= c𝐻Ψ 𝑖ℏ
𝜕𝜓
𝜕𝑡

= c𝐻𝜓

𝑝

𝑥

External electric 
field 𝑚#

j(t)

+

−

𝜙
𝑞

𝐶


