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Superconducting Quantum Circuits

Flux representation

d =¢,q= _ihai fundamental observables
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H = _EW+ W, (@) —j®)p
¥ =Y(¢p;t)

oYy _
ih— = HY

ot
Initial conditions: W(¢; t = ty) = ¥, (¢)

Boundary conditions: W(¢; t) «regular» for ¢p — o0 or periodic in ¢

W (¢)




First hints to quantum circuits

Quantum Electrodynamic Circuits at Ultralow
Temperature

Allan Widom

Department of Physics, Northeastern University, Boston, Massachuseits

(Reccived March 8, 1979 revised May 30, 1979)

Within present low-temperature technology it is possible to construct macro-
scopic circuits which exhibit quantum behavior, i.e., subcircuit currents and
voltages need to be treated as operators rather than numerical quantities. The
general theory of “quantum circuits’ is discussed with a view toward the
experimental verification of quantum electrodynamics on a macroscopic scale.

1. INTRODUCTION

kp = 1.380649 x 1023 ) - K1

Boltzmann constant

It is well known that electrodynamic processes at frequency w require
quantum mechanics if the temperature is sufficiently small, 7 < Aw/ kg. With
present ultralow-temperature technology, macroscopic circuits at only
moderately high frequency are “‘quantum circuits.” The nature of quantum
circuits is such that voltages and currents are operators rather than numeri-
cal quantities. Circuit oscillations are ‘*quantized” into photons.

h =1.054571817...x10734 J.s’!

(reduced) Planck constant

The purpose of this work is to present the general theory of quantum
circuits with a view toward the experimental verification of quantum electro-
dynamics on a macroscopic scale. Clearly this requires an ultralow-
temperature regime.

10 mK < 208.366..MHz

A. Widom, Quantum Electrodynamic Circuits at Ultralow Temperature, Journal Journal of Low Temperature Physics, Vol. 37,

Nos. 3/4,1979.




“Do macroscopic degrees of freedom obey quantum mechanics?”

VOLUME 55, NUMBER 15 PHYSICAL REVIEW LETTERS 7 OCTOBER 1985

Energy-Level Quantization in the Zero-Voltage State
of a Current-Biased Josephson Junction

John M. Martinis, Michel H. Devoret,® and John Clarke
Department of Physics, University of California, Berkeley, California 94720, and Materials and Molecular
Research Division, Lawrence Berkeley Laboratory, Berkeley, California 94720
(Received 14 June 1985)

- We report the first observation of quantized energy levels for a macroscopic variable, namely the
J. M. Martinis phase difference across a current-biased Josephson junction in its zero-voltage state. The position M. H. Devoret
of these energy levels is in quantitative agreement with a quantum mechanical calculation based on

parameters of the junction that are measured in the classical regime.

PACS numbers: 03.65.—w, 05.30.—d, 74.50.+r
Josephson

junction
/

Do macroscopic variables obey quantum mechanics? °
This question, although central to the theory of mea- /

surement,! has only recently been addressed experi-
mentally. An attractive candidate for such experimen-
tal investigation is the Josephson tunnel junction, a —_—
system in which thermal fluctuations and perturbations X —
due to the environment can be made negligible. In the
case of the current-biased junction, the macroscopic
variable is the phase difference, 5, between the super-
conducting order parameters on either side of the bar- . o
rier. The junction can be represented as a particle J. Clarke
moving in a one-dimensional tilted cosine potential.?

LA. J. Legget, Macroscopic quantum systems and the quantum theory of measurement, Progress of Theoretical Physics
Supplement, 1980. 5
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“Macroscopic nucleus with wires”

Quantum Mechanics of a Macroscopic Variable:
The Phase Difference of a Josephson Junction

JoHN CLARKE, ANDREW N. CLELAND, MICHEL H. DEVORET, DANIEL ESTEVE,
JoHN M. MARTINIS

Experiments to in te the quantum behavior of a
macroscopic degree of namely the phase differ-
ence across a Josephson tunnel junction, are described.

The ents involve measurements of the rate
of dlmon from its zero voltage state. Lov?;gepcra-
ture measurements of the escape rate for junctions that
are cither nearly undamped or moderately damped agree
very closely with ictions for macroscopic guantum
tunneling, with no adjustable parameters. Mictowave
spectroscopy reveals quantized energy levels in the poten-
tial well of the junction in excellent agreement with
quantum-mechanical calculations: The system can be re-
garded as a “macroscopic nucleus with wires.”

RE MACROSCOPIC DEGREES OF FREEDOM GOVERNED BY
quantum mechanics? Our everyday experience tells us that a

ical description appears to be entirely adequate. The

trajectory of the center of mass of a billiard ball is predicted
wonderfully well by classical mechanics. Even the Brownian motion
of a tiny speck of dust in a drop of water is a purely classical
phenomenon. Until recently, quantum mechanics manifested itself
at the macroscopic level only through such collective phenomena as
superconductivity, flux quantization, or the Josephson effect. How-
ever, these “macroscopic” effects actually arise from the coherent
superposition of a large number of microscopic variables each
governed by quantum mechanics. Thus, for example, the current
through a Josephson tunnel junction and the phase difference across
it are normally treated as classical variables. As Leggett (1) has

992

emphasized, one must distinguish carefully between macroscopic
quantum phenomena originating in the superposition of a large
number of microscopic variables and those displayed by a single
macroscopic degree of freedom. It is the latter that we discuss in this
article.

Our usual observations on a billiard ball or Brownian particle
reveal classical behavior because Planck’s constant # is so tiny.
However, at least in principle there is nothing to prevent us from
designing an experiment in which these objects are quantum
mechanical. To do so we have to satisfy two criteria: (i) the thermal
energy must be small compared with the separation of the quantized
energy levels, and (ii) the macroscopic degree of freedom must be
sufficiently decoupled from all other degrees of freedom if the
lifetime of the quantum states is to be longer than the characteristic
time scale of the system (I). To illustrate the application of these
criteria, following Leggett (I) we consider a simple harmonic
oscillator consisting of an inductor L connected in parallel with a
capacitor C. The flux ® in the inductor and charge 4 on the capacitor
are macroscopic conjugate variables. Observations on the oscillator
arc made by means of leads that unavoidably couple it to the

resistor R in paralklw:thL and C. The natural angular frequency of
oscillation is wg = 62' 2 the impedance at the resonance fre-

quency is Zo = (L/C)"2, and the quality factor (ratio of stored
energy to energy d:sslpawd in one oscillation) is Q@ = weCR = R/Z,.
To observe quantum effects we thus require (i) Awo >> kpT, where

J. Clarke and A. N. Cleland are in the Dep of Physics, University of California,

MmMcamhMmeu&‘wmvhmi Berkel 'LM!-'[
A 720. During time these were

WDGVWMIMMM"M dnmzd&wm . Esteve are currently at

cedﬂ’Scrvicedzl’hynqm,(‘nxmd Nucléaires de Sachy, 91191 Gif-sur-Yvette
France
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3.1.1 Artificial atoms: stationary states
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Isolated Superconducting Quantum Circuit
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Energy Eigenstates

h? 92

E = _fW+ W, (¢)

The energy eigenstates are solutions of the eigenvalue problem

E €E(¢) = EfE(Qb)

W (¢)




Stationary States

1 hZ 62
ih—= [_ 20342 + W,(d))] Y (¢;0) W, (¢) C

The wave function

W(p;t) = e EVREL(P)

is solution of the time independent Schrodinger equation.

It represents a stationary state of the quantum circuit: the probaibility density |W(¢;t)|? = |Ex(p)|? is
constant in time.
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(E,, — Ey) in units of hw,

Stationary States

C E= n 62+1 2
20 0¢2 T4

10

@
L

V(s t) = e Fnt/hy, ()

All eigenstates are bound

1 — 3rd level X1(x) !

x3(x)

b o vy - - - —————— - -

. /
—— ground /
~== excited 7

4th level

=

h? 92

< ; E = ~ 20947 + E)[1 — cos(2np/Py)]
W, (¢;t) = e Ent/hg, ()
bound eigenstates
8 =2 . =
\\\\ 52(X) ,/
o \\ /l
3 61 \ ’
'\Q \\ I,
5 | Wil & (x) !
B e e o I O N
C
>
£
S 2]
[
[
S 4
~ —— ground \ 54
—— excited \\ 4
3rd level \~-_,/
=0 ¢

12



E=

Stationary States
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Superposition of Stationary States

in2r =~ Z‘—C% AOINICE W, (¢) c___
Y (p;t) = X, ¢, &y (P)e it where w, = E,/ handn = 0,1,2, ... j® =0

The probability that the measurement of the energy yields the value E,, when the circuit is in the state W(¢; t),

PE(Enltp) = |<€n|tp)|2 = |Cn|2-



3.1.2 Artificial atoms: Transmon



Linear Resonator

Wi($) = ¢

Resonator versus Artificial Atom

Artificial Atom

w;(¢)
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The energy levels of the harmonic oscillator
are uniformly spaced.

¢ =0

[

Anharmonicity gives arise to non uniformity
in the distribution of energy levels.

The nonlinearity of Josephson junction

allows the realization of artificial atom.
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Artificial Atom: Two different scenarios

Josephson junction

i | Cooper pair box: the “artificial atom” is

C : Cs=0 highly sensitive to charge noise, which
E : e has proven more challenging to mitigate
Cooper pair box: E—] K1 '>KC P &Ing 8
C 1

ol A than flux noise, making it very hard to
: achieve high coherence.

|

|

Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf,
Charge-insensitive qubit design derived from the Cooper pair box, Physical Review A, 2007.



Artificial Atom: Two different scenarios

Josephson junction |

E
Cooper pair box: E—] K1
Cc

Josephson junction |

E
Transmon: =2 > 1
Ec

EC:_

_____________________________

R S —

_____________________________

CS >> C]

Cooper pair box: the “artificial atom” is
highly sensitive to charge noise, which
has proven more challenging to mitigate
than flux noise, making it very hard to
achieve high coherence.

Transmon: the “artificial atom” s
insensitive to charge noise.

Ey1 = E1 — Ey = hw, — E¢,

w, =% /8EC|E] |

Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf,
Charge-insensitive qubit design derived from the Cooper pair box, Physical Review A, 2007.



(a) Symmetric transmon

(b)
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Split transmon

E]’ - E] COS(ﬂCI)ext/CDO)

Eoy = haw, — E¢, @, = %JSEC|Ej|

Magnetic flux bias, @ = TP,/ Py

P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, A quantum engineer's guide to superconducting qubits,

Applied Physics Review, 2019.
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Split transmon

(a) Symmetric transmon (c) Asymmetric transmon
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P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, A quantum engineer's guide to superconducting qubits,
Applied Physics Review, 2019.
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3.1.3 Artificial atoms: Transition Probabilities



Transition probability

The circuit is assumed to be in the stationary state ¢; (qb)ei“’it fort <0,e.g.,
j)=0fort <O.

At t = 0 the current generator switches on, and fort > 0 the quantum
state of circuit is no longer the stationary state &;(¢)e!®it,

Jj(®)

We introduce the probability Pl-f(t) of finding the circuit in another
stationary state g‘f(qb)ei‘”ft at time t, in other words, we want to study the _
transitions induced by the current generator between the stationary states j@®
& (et @it (initial state) and the stationary state ff(gb)ei“’ft (final state).

Po(¢) = &i(@) .

2 ‘ \ t -

2 +Pmax
P (D) = (%)) = j £-(¢) W(g; )b

C. Cohen-Tannoudiji, B. Diu and F. Lalo&, Quantum Mechanics, vol. ll, 2nd ed., Wiley-VCH, 2019.
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Artificial Atom Driven by a Time Varying Current Source

E
i

- f
oV h? 02

ot 2C 02

 W(p;t =ty) =¥ (P)

We assume that the spectrum of the energy of the circuit E is discrete and not degenerate.

The energy eigenstates are solutions of the eigenvalue problem

where

th—=|= oo a + Wi($)|¥ - j()P¥

\_'_l
Source term

W, = W;(¢)

E fn(qb) = Enfn(gb)r n=2012,..

(fmlfn) = Omn-

We denote with (—¢max +Pmax) the support of the eigenfunctions &, (¢).

()i

Jj(®)
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0¥ _
o T

The solution of the time-dependent Schrodinger equation can represented as a
superposition of the stationary states {&, (¢)e~'@nt},

Artificial Atom Driven by a Time Varying Current Source

E
i

h? 02

2C 02

- W(p;t =tp) = Polp)

+ W ()W —jt)p¥
\_'_l
Source term

W, = W;(¢)

Y (¢;t) =X, c,, ()&, (p)e " ®nt where w, = E,/ handn = 0,1,2, ....

The expansion coefficients are functions of time because the Hamiltonian depends
explicitly on time through the interaction term —j(t)¢.

()i

Jj(®)
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Artificial Atom Driven by a Time Varying Current Source

E
. [ 1
TR IR LR [T
ih—=|-—==— —
ot 2C 92 I
¢ ' w; = W;(¢)

Source term

- W(p;t =tp) = Polp)

The solution of the time-dependent Schrodinger equation can represented as a
superposition of the stationary states {&, (¢)e~'@nt},

Y (¢;t) =X, c,, ()&, (p)e " ®nt where w, = E,/ handn = 0,1,2, ....

Substituting this expression into the Schrodinger equation, given that &,(¢) is the
eigenfunction of the energy observable with eigenvalue E,, and using the
orthonormality property of the eigenfunctions, we obtain for c,,(t) the ordinary
differential equation

Cm = ilhzn W (£) c, (t)et®mnt form = 0,1,2, ...

where w,,, = (E,, —E,)/h , Wy, (t) =jt)P,,,, and D, = (&,|0E,). The
equations are solved with initial conditions c,, (0) = (&,,,|¥,) .

Jj(®)

25



Transition probability

The circuit is assumed to be in the stationary state &;(¢)e'®it for t < 0.

At t = 0 the current generator is applied, and for t > 0 the quantum state
of circuit is no longer the stationary state &;(¢)e'®it, ——

Jj(®)

We introduce the probability Pl-f(t) of finding the circuit in another
stationary state Ef(qb)ei“)ft at time t, in other words, we want to study the
transitions induced by the current generator between the stationary states
& (et @it (initial state) and the stationary state Ef(gb)ei“’ft (final state),

Jj(®)

Po(¢) = &i(@)

2 ‘ \ t -

+Pmax
j £:($) V(g )dg| = |cr (0]

Piar(0) = (& [®)| =

C. Cohen-Tannoudiji, B. Diu and F. Lalo&, Quantum Mechanics, vol. ll, 2nd ed., Wiley-VCH, 2019.
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When

then

where

Transition probability

](t) = ]mCOS(a)t)

h
Jm®Pir

]mcbif)z {sin[(a)ﬁ—w)t/z]

2
1
Pisr(t) = ( - (0;-0)/2 } for w = wg; and a;« t K<

E; —E; +Pmax
opi= Tt oy = (Elog) = | dp E@)9E @)

“¥Ymax

C. Cohen-Tannoudiji, B. Diu and F. Lalo&, Quantum Mechanics, Il, 2nd ed., Wiley-VCH, 2019.



Selection Rules

mq)if)z {Sin[(wﬁ — w)t/2] $o(x)

por= (5 (wri = w)/2 }4/\;

+Pmax >
dy = T dg En(@)BEn(d) p
_ ¢1 (x)

¢max

+Pmax
Po; =j £0(d) 981 (e )dgp % 0

SV

¢max

&2(x)

Transitions from the ground state
to excited states with m even are

forbidden.
+bmax ‘/\ N—
Dy, = j \ .

fo(¢)¢fz(¢)d¢:0 / >
¢

—Pmax
28




Resonant Interaction

m
2
first excited state 1 T
ground state 0 Yo () = &o(9)

For w = w1y we obtain aresonant interaction,

Jm®P10
h

2
#0-1(t) = ( ) t2 for % Kt <K

Jm®P10

and

(@mo-®)t]\ 2

$0-m(t) = (de;m)z {Sin([wmofw) } = 0 form = 2.

2

Transition from the ground
state to the first excited
state occurs through the
absorption of an energy
quantum equal to Awq.
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Resonant Condition

m
2

¥, () = &(¢) l 1 first excited state
0 ground state

For w = w1y we obtain:

2
P10t = (@) t2 for = < t <

h

and

(wmo—w)t]

~ (Jm®Pmo)? Sin[
801_>m(t) = (mhm ) { (wmofw)

2

)

h

Im®P1o0

2

Transition from the first
excited state to the ground
state occurs through the
emission of an energy
quantum equal to Awq.

=(0form=2
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Resonant Condition

Transmon
m
second excited state 2 w F* £, ; 2
first excited state 1 T E, — E,
w =
ground state 0 ~ h
Yo (@) = &o()
) Linear LC circuit
Non uniformly spaced energy levels
______________ N
second excited state 2 ! S
first excited state 1 A
T o
0

ground state

Yo (@) = $o(9)

Uniformly spaced energy levels
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3.1.4 Artificial atoms: Two level approximation, Qubit, Rabi oscillations and Control



Two-level approximation

j(@) = Jmcos(wt)

If w = w4, the transition probability £, (t) = |c,, (£)|? for m > 1 is negligible with respect to
#0-1(1) = |c (t)]?. Analogously, the transition probability §0;..,(t) = |c,,,(t)|? form > 1 s
negligible with respect to ;0 (t) = |co(£)|?.

Therefore, for describing the time evolution of the atom when w = w4 it is sound to assume
cm(t) = 0 forany m # 0, 1: the artificial atom behaves as its state space has two dimensions,
namely, the artificial atom behaves as two-level system.

33



Qubit

|1) first excited state E;
T W10 =

|0) ground state E,

The artificial atom that behaves as a two-level system implements a qubit: the computational space
consists of the two eigenstates of the atom energy.

34



Disregarding all the terms with
m = 2 in the expression of the —=
wave function, we obtain

Time Evolution of the Qubit State

W(g;t) = co()So(Ple ™0 + ¢y ()81 () e 711t

—

1 ) 1 .
o = awoo(t)cO(t)e‘“’oot + £W01(t)c1(t)e‘“’°1t

ih

CWmp = (Em - n)/h ’

o Winn(t) = J;n @ cos(wt)

C. Cohen-Tannoudiji, B. Diu and F. Lal

1 . 1 ,
¢1 = —Wio()co(t)e'®rot + EWM(UQ (t)etwnt

with ¢y (0) = (&1 Wo), c1(0) = (&1|Wp).

| Prn = (Gl = [1y o dp Em(D)En(9)

o0&, Quantum Mechanics, vol. |, 2nd ed., Wiley-VCH, 2019.
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Disregarding all the terms with
m = 2 in the expression of the —=
wave function, we obtain

CWmp = (Em - n)/h ’

o Winn(t) = J;n @ cos(wt)

+Pmax
_DPin = (fmlqb)(n) = f—¢max

Time Evolution of the Qubit State

W(g;t) = co()So(Ple ™0 + ¢y ()81 () e 711t

—

1 ) 1 .
o = awoo(t)cO(t)e‘“’oot + £W01(t)c1(t)e‘“’°1t

1 . 1 ,
€1 = EWm(t)Co(t)elwmt + EWM(UQ (t)etwnt

with ¢y (0) = (&1 Wo), c1(0) = (&1|Wp).

_ _ _ (E1—Ep)
Woo = wy1 =0, w19 = 7

dp $m(P)PSn ()

yWo1 = —W1g

Do = Pyy = 0,19 = Doy = [ d¢ £0(9)pé1()
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Time Evolution of the Qubit State

P95 0) = o (D)o (le™ 0 + e (D81 (¢) e

—

. (0]
¢ = JmP1o0

0 (t)e~t®10t cos(wt)

. ® ,
= ]ml—hlo co(t)et@10t cos(wt)

——

with Co(O) = (60'1{,0)1 Cl(o) = <€1|Lp0>

W10 = @; D9 = jfnT;x dp &o(P)déi(P)

hz
For a transom &, = \/Tt where Z; =

—

¢o = —iQgrcos(wt)cy (t)e @10t

¢, = —iQgpcos(wt)cy(t)e i@t

—

with ¢y (0) = (&|Wy), c1(0) = (&1|Wp)

O, = @ is the Rabi frequency.

Ly
Ct
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where

Resonant wave approximation
W(g;t) = co()So(Ple ™0 + ¢y ()81 () e 711t

' co(t) = el@Wmw10t/2 p (1),
¢, (t) = e7H@-@1t/2 b (1),

r Q w— W Q
by(t) = cos (TRt) — 2i %sin (TRt),

~ i (%)
| by (t) = Lo, Sin S L)

Qp(w) = \/(a) — w10)% + Q2 s the Rabi flopping frequency.

In the resonant condition w = w4 itis Qp = Q,..

if (), K wigandw = wqg
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first excited state E;

ground state E,

Probabilities

O
by(t) = cos <7t) -2

T W19 =

(0 —wqg) |

Ey — Eg

h

Qg

l

bi(t) = —i D sin (QZ—Rt),

Qpr

!

i Q
lco(O)]? = [by(D)]* =1 -

e (D17 = by (D)]? =

Qg

2
Q—;Sin2 (—t

)

R

2

T sin
2

Q’R

i

Qg

2

Q
2

)

dl

The qubit is initially in the ground state,
co(0) =1,¢,(0) = 0.

).

)o@ + 1 (01 =1

39



Rabi Oscillations

A 90510 =l (D)2

mIQ, 21/ Q,
B 0,\2 Qg
|lco (B 0. 3 E, E, _ E,
= W1 =
0> Q I h
@I = (55) sin? (Ste) Eo
- R

Op = \/(w — wy0)? + OF

C. Cohen-Tannoudji, B. Diu and F. Laloé, Quantum Mechanics, vol. |, 2nd ed., Wiley-VCH, 2019. 40



Resonant interaction lim (—
wW—wW10

Rabi Oscillations

A 500—>1(t) = |C1(t)|2 = Sinz(

Qg
—t
2 )

T/Q, 21/Q

the circuit goes
in to the excited state at
t=mw/Q,

the circuit comes back
in to the ground state at

t,=2m/Q,

Op = \/(w — wy0)? + OF

W19 =

Ey — Eg
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3.2.1 Linear LC circuit: stationary states



Linear LC Circuit

£ +
A

Y 'hz 92 1 ‘
05 = (~seagt o) I vt e —— (Do

source term

ot T
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Energy Eigenstates

A h? 92 1,5
E= 2C6¢)2+2L¢

h? 92 1,9 _ _

(_E@-I_qu )Xn_ n Xns n—0,1,2,
-1 7

wr—m, 0
hZy,q.

gbc:\/ 0

=4 hf/Zy

C. Cohen-Tannoudiji, B. Diu and F. Laloé, Quantum Mechanics, vol. |, 2nd ed., Wiley-VCH, 2019.




Energy Eigenstates

po_no? 1.
E__2C6¢>2+2L¢ C
L
h2 92 1 2 _ _
(_ E@ T qu )Xn = LbnXn N = 0'1'2’ - 1
1 L
Or =g 40 = \/ c
b = hZy,q. = vV h/Z,
A 1 (1 2 .1
a=—=|—¢+i—q
2 (¢>c dc ) annihilation and
1 /1 1 creation operators, they are not self-adjoint
at =—(—¢-i-4q)
V2 \@. qc

- 1 ~ . 1
E = hw, (&Td + —) N = aTa is the number operator, it is self-adjoint E = hw, (N + E)

C. Cohen-Tannoudiji, B. Diu and F. Laloé, Quantum Mechanics, vol. |, 2nd ed., Wiley-VCH, 2019.



Energy Eigenstates
E=hw,(N+3), N =ata
Ny, = ny, n=20,12,...

E, = hw, (n + %) withn = 0,1,2, ...

B [+)] ©
1 L

(E,, — Ep) in units of hw,

o
I

. W 0. <1 o
“\‘VVI (d)) l,

b X2 (¢) '/’ 3

kY 7 E; = 2 hwy A second excited state state
—— ground K
-=- excited o

1 = 3rd level X1 (d)) / 3 Ih&)r
R L Ey = > hoy first excited state state
1 hw,
E, = Ehwr ground state
¢ =0 ¢ hw, is the quantum of energy or
the photon.
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Energy Eigenstates of the linear LC Circuit

E3 = _hwr -
2 . AL &/b.

), = 200, (0Mo=0 | |(a), = [1:(0)7 55 7, (9Mo=0
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Energy Eigenstates of the linear LC Circuit

Z3(¢) -
<7 k; LS

! /¢

(¢°),

N | =

iz

2(9) :
< 7‘ 3 &/
%o(9)
&/P.

[+
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Fluctuations

o)) = \/<¢2 >x , Ol = ’/<q2>x «fluctuations»

® 1 1 1) 7 1 |
") = - () _ _
S \/(n+5)hzo = \/(’HEJ bc, Oy _\/(n+5)zo —\/(n+§>qc|

d)C - hZO' qc = V h/Zo

rad ¢, = 3.3x10717 v. s, d.w, = 3.3 uV voltage fuctuactions in the ground state
Wy = 1011 —, 7, = 10Q m=d+ o
S gc = 3.3 x10718 C, Q.w, = 0.33 uA current intensity fluctuations in the ground state
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E, = hw, (n + %) withn = 0,1,2, ...and w, = 1//LC

(E,, — Ep) in units of hw,

10

[e2]
L

ow
T

E
]

Stationary States

B h262+1 2\
~\ 2C0¢? T4

Wi (9)

\
\-

- ground
-== excited
- 3rd level

4th level

___________________

W(p;t) = e Ent/hy, (¢)

where

E Xn(P) = Enxn(d)
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Driven linear LC

circuit

L C

& e (D i(t)

E
]

T 20047 2L

_aw_( h? 0% 1

or T

qbz)‘P —j(t)p¥

source term
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Driven linear LC circuit

LY _((n2a? 1, |
ih— = <— 2ca¢z T 2L? )‘P —Jj(O¥ W (p;t) = Z cn (D) xn (p)e~iont

n

 W(p;t=0) = xo()

Gy = %Zn Winn (£) ¢ () et ®mnt form = 0,1,2, ...,

where wy,, = (B — En) /R, W (8) = j() Dy and Doy = hf—o(\/n + 16mns1 + ViSmn_1)- These

equations are solved with the initial conditions ¢,(0) = 1 and ¢,,(0) = 0 forn = 1,2, ....



Driven linear LC circuit

’_hatp_ h? 9% 1 .
ih— = <— 2ca¢z T 2L? )‘P —Jj(O¥ W (p;t) = Z cn (D) xn (p)e~iont

n

 W(p;t=0) = xo()

Gy = %Zn Winn (£) ¢ () et ®mnt form = 0,1,2, ...,

where wy,, = (B — En) /R, W (8) = j() Dy and Doy = ff—o(\/n + 16mns1 + ViSmn_1)- These

equations are solved with the initial conditions ¢,(0) = 1 and ¢,,(0) = 0 forn = 1,2, ....

%ha)r +3ho, . x3(¢)

1 hao, In this case the energy levels are

EhwﬂLZhwr 7\ Xx2($) uniformly spaced, therefore all the
ho, energy eigenstates can be resonantly

Ehw,+ha), — Xx1(9) excited. The linear LC circuit cannot

1 ho, behave as a two-level system.

Ehwr - Xo(®)



Driven linear LC circuit

j(t) = J,sin(wt), with resonant condition w = w,

0.9} 5 |
T |C0 (t)| |
07t \ |
0.6 | |
05t A \ 2 |
04 | 2 |C2 (t)| —

|C1 (t )| /N ) ‘/‘/ |C3 (t) |2

0.3} AR

0.2

0.1 F

Unlike the stationary states of an anharmonic oscillator
all stationary states are excited (200 basis function).
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3.2.2 Linear LC circuit: coherent quasi-classical states



Coherent Quasi — Classical state

¢ - representation

172 ’
Stationary ground state Y(p:t)= el 1 ___—__ | ax _¢_ g o2
e e

classical limits

oM _

b

2E,

hw,
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Coherent Quasi — Classical state

¢ - representation

172
. ; 1 ¢" |
Stationary ground state Y(o:t)= e 2 | _____ | expl| — o il
(051)=x,(9) (\/E(PCJ P[ 2¢c2j

1/2 B 72
Coherent quasi-classical state  Wges(;t) = (\/7:7> exp {_ % rb (¢¢)qu¢( )] }exp {i [<q)quc(t) ghg_ ;_wrtn

where
( Dy, (8) = f_:o‘l’ésc(gln )P Wysc(d; )dep average flux
(Dw,, (1) = j_:o Yoo (s t) ?%‘quc(qb .t)dp ~ Average charge
A¢=%,Aq=3—% = A¢Aq=§

57



Coherent Quasi — Classical State

¢ - representation

1/2
. » 1 o° ) _
Stationary ground state Y(o;t)= e ot — exp| — o2
(6:0)= 1, 0) (wj p( 2¢f)

1/2 _ )72
Coherent quasi-classical state  Wges(p;t) = (\/7:7) exp {_ % rb <¢¢>LPq5c( )] }exp {i [(q)quc(t) %_ ;_wrtn

The function ‘chs(qb; t) is solution of the Schréodinger equation provided that

d 1
| | E(Qb)lpqsc = E(Q)quc,
Classical equations <q>‘quc

for the driven - d 1 _ (D) L ; i
o = - + j(¢t), qsc
LC circuit dat <Q)‘quc L <¢>‘quc Jj(®) —

+

(Qb)lpqsc(t =0) =0, (q)qquc(t =0)=0 - -
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Quasi — classical state

¢ - representation

1\ 1[¢ = (Dw, . O] (. ¢ 1
) e 5 Lo 0 - o)

LIJQCS(qb; t) = (W

Probability density

[Wyes(95 O = —==ex _[""@)quc(t)r
qcs ’ _\/T[T% p d)c




Time evolution of quasi-classical states: free evolution

t:tl

—_—

4

‘|qucs(¢; t)lz

+

0 = e - [2= DO /\
qcs\¥» - 7T¢C p qbc 0
1

(v, L~ C

/.
0

| t=t,
(D)o 050 (£) = Prycos(wrt +7) j
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Time evolution of quasi-classical states: driven evolution

a®) = [ @y, + i@, ]
B \/E ¢c Fasc qc 1 Fase
1
(Ehg 0, () = hoor (Ja @1 + 3)
where
A
(X(t) = Zlc_];) e_iwr(t—t’)j(tl)dtr
and

1
la@®)I? = —(E)y,, () — 5

hw,

When |a(t)]? » 1, |a(t)|? gives the “average” number of photons stored in the circuit.



Photon generation in quasi — classical state

j(@) = Jmsin(wt)

: t
a{(t) = 2l j e—iwr(t—t’)j(tl)dtl
0

(4

If w = w, we obtain

i0 . .
t) = —lwrt( plw_t __ 1
a(t) o e (e )

Jm

where w_ = w, — w and y = 20" Therefore, it results
c
Qo2 w_t
la(t)]? = (—0) sin? (—)

w_ 2

In the resonance condition, w,, = w we obtain
Qo>
o = (%)



Photon generation in quasi — classical state
The probability of finding the circuit in the energy eigenstate |x,,) is given by the Poisson distribution

2
P‘/’qsc(m; t) = |<Xm|qjq50>| - m!

_ (tmwesd)”

exp (—(m)q;qsc) withm=0,1,2,...

where (m)quSC is the average value of number of photons in the state |1/Jqsc): it varies in time and
depends on the intensity of the classical current source.

P(m)

04 r
1]

0.311

02 |t <Tn)kpqsc =1

011 H
l)(l' ﬂ | i IR — I 1 1 ] | ERERE v

02 g

0.1 H—HJ] H H <m>lpqsc =35
001l s ﬂ ﬂ |} S

0.7

(m)quc =10
0.1
oy |1 ey

m

Expectation value of photon number

(M)w,y, = la(OI?
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Photon generation in quasi — classical state
The probability of finding the circuit in the energy eigenstate |x,,) is given by the Poisson distribution

_ (tmwesd)”

2
P‘/’qsc(m; t) = |<Xm|qjq50>| - m!

exp (—(m)quc) withm=0,1,2,...

where (m)quc is the average value of number of photons in the state |1quc>1 it varies in time and

depends on the intensity of the classical current source.
04 r

0.311

02|t <Tn'>¢qsc =1

011 H
l)(l' ﬂ | i IR — I 1 1 ] | ERERE v

02 g

Ll
001l s ﬂ ﬂ o !

0.7

P(m)

0.1

.‘?ﬂggﬂﬂﬂﬂﬂﬂﬂﬂﬂ

0.0
() RS 7 8 9 10 11 1213 14 15

m

Expectation value of photon number

(M)w,y, = la(OI?

Variance of photon number

(Bmhgy, = [im2ha,, = (i, = la(®)

<7n>1,bqsc =1
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Photon generation in quasi — classical state
The probability of finding the circuit in the energy eigenstate |x,,) is given by the Poisson distribution

((mh'qsc)m

Plpqsc(m; t) = |()(m|‘quc)|2 = —exp (—(m)q;qsc) withm=0,1,2,...

where (m)quc is the average value of number of photons in the state |1quc>1 it varies in time and
depends on the intensity of the classical current source.

04

0.311

02|

01

0.0

P(m)

0.1

W
<Trl'>¢qsc =1

Expectation value of photon number

(M)w,y, = la(OI?

W
Hﬂn_lx S NN S W —

02 g

sl I H_HJH[H ” f<n :¢L

Variance of photon number

(dm)y, ., = J<m2>quc —(m%__. = la(®)l

0.2 ¢

0.0
0

(m)lpqsc =10

et 1L

d‘. 7\:(»1][’!“1«

m

(Am)lpqsc 1

(Mg, lal

classical limit |a|>>1
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3.2.3 Linear LC circuit: Dispersive readout



Transmon coupled to a resonator

This system has two degree of freedom: ¢,- and ¢,.

In the weak coupling limit C;., C; >> Cy4 Q- is canonical conjugate to ¢,, and Q; is canonical conjugate to ¢;.
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Hamiltonian in the Weak Coupling

‘ g
n + -> n
i© (D bar ¢ ¢ X, @ ‘.
Er ﬁlnt ﬁdrwe
f | 2 r \ q A ) p i X
Q} | ¥ 07 21, Cg ~ =
H = + +{—+ E/[1- + _ it
<2Cr 2L, 2C, J cos O, C.C, Qr Qt ]( )d)r



Effective Hamiltonian in the Dispersive Regime

El(t) X1(P¢)
i E®_g®
» w; transition frequency of the transmon, w; = %
Eét) Xo(d¢e)
1 @,

| » Zr characteristic impedance of the transmon, Z; = \/L]/Ct where L; = T
Cc
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Effective Hamiltonian in the Dispersive Regime

El(t) X1(d¢)
: FO_p®
> w; transition frequency of the transmon, w; = % t
7 Eé . Xo(d¢e)
| » Zr characteristic impedance of the transmon, Z, = \/L]/Ct where L; = Z%ql’_o
Ey = hwe/2
El(t) X1(e) + E, x1(de)
— hw;
E(gt) Xo(¢r) —E, Xo(¢r)

In the two-level approximation, the transmon Hamiltonian can be expressed as E“t = E(J where the Pauli
operator & is such that

6x0(Pr) = —x0(@e) and 6 x1(¢r) = +x1(r)
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Effective Hamiltonian in the Dispersive Regime

El(t) X1(d¢)
: FO_p®
> w; transition frequency of the transmon, w; = % t
Eé . Xo(d¢e)
| » Zr characteristic impedance of the transmon, Z, = \/L]/Ct where L; = Z%QI’_O
Cc

» w, natural frequency of the linear LC circuit, w, = 1/\/LrCT

» Z, characteristic impedance of the linear LC circuit, Z, = \/Lr/Cr

Q2 1C 1
n=—,A=w;—w,,Q, =-—L—
Aw 2 CrCe \[ZyZt
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A.

A.

Effective Hamiltonian in the Dispersive Regime

El(t) X1(d¢)
: FO_p®
> w; transition frequency of the transmon, w; = % t
Eé . Xo(d¢e)
| » Zr characteristic impedance of the transmon, Z, = \/L]/Ct where L; = Z%QI’_O
Cc

» w, natural frequency of the linear LC circuit, w, = 1/\/LrCT

» Z, characteristic impedance of the linear LC circuit, Z, = \/Lr/Cr

Q2 _ 16 1

=—, Aw =w; —w,, Q.= —
=20’ t TN T 2 ¢ Ce 202,

: : . Q¢
Dispersive regime o] K1

ﬁef = —(wy +1)6 + h(w, + n6)N — j(t)P where N = af a

h
2

Blais et al., Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, PHYSICAL

REVIEW A 69, 062320 (2004).
Blais et al., Circuit quantum electrodynamics, Reviews of Modern Physics 93, April-June 2021.

72



Dispersive coupling

We assume Aw = wy — w, < 0

QZ

C . . .

—— K 1 dispersive regime - —
Ao P BIME M =1,

i7 h A AN\ AT . -~

Hep = E(a)t +1)6 + A(w, + né)N — j(t) P,

transmon H,. driven resonator

V(de, drst) = co(D)E (PP (Py5 1) + 1 (D& (P W (¢y5 1)
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Dispersive coupling

We assume Aw = wy — w, < 0

QZ

C . . .

—— K 1 dispersive regime - —
Ao P BIME M =1,

i7 h A AN\ AT . -~

Hep = E(C‘)t +1)6 + A(w, + né)N — j(t) P,

transmon H,. driven resonator

V(de, drst) = co(D)E (PP (Py5 1) + 1 (D& (P W (¢y5 1)

6x0(Pe) = —xo(@e) and 6 x1(¢r) = +x1(¢y)

Aip(de, brs ) = co(O0(be) [ (0r = ) B = j(0: | W& (i 0) + 106190 [ (w0, + D) B = j(©F,] W (r:0)

Q.Z QZ
(wr—m>>a)r <wr+m> < Wy
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Dispersive coupling

We assume Aw = wy — w, < 0

QZ
C . . .
—— K 1 dispersive regime - —
Ao P BIME M =1,
_ h ~ 0% \ . .
Hefzz(a)t+n)a+h wT+A_a)G N — j(t)o,

transmon driven resonator

In the dispersive regime, the resonator frequency becomes qubit-state dependent:

> if the transmon is in the ground state y,(¢;) the resonator natural frequency is w, +

> if the transmon is in the excited state y;(¢;) the resonator natural frequency is w, —

2
C

|Aw]

2

> Wy,

—— < W,

[Aw|
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Dispersive qubit readout

| |2

Phase response for the voltage
v, = ¢, in absence of interaction

with the transmon.

K
+ +
Qr
b XL, ¢ b X,
Phase
2
\\
A\ W
w \
I




Dispersive qubit readout

/2

Aw <0
Phase

aﬁ\ Xo(Pe)

Aw <0
Phase
/2 1
X1(de) Wy
7\ o
Q% \ !
2w, — e .
T W, v

phase response of LC circuit
interacting with the transmon in
the excited state: the phase at
w = w, is negative.

-n/2

phase response of LC circuit
interacting with the transmon in
the ground state: the phase at
w = w, is positive.
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Signal-to-Noise Ratio

Maximizing the Signal-to-Noise Ratio (SNR) is crucial. The SNR can be enhanced by increasing the probe
power, i.e., the average number of photons (N), for the detection of the resonator state.

Nevertheless, (N) must be significantly less than the critical photon number

(N)e = (Aw/20,)%.

If not, the approximation

N S

ﬁef = ((Ut + 77)6-2 + h(wr + Tlﬁz)ﬁ _j(t)$r

is no longer valid. Then, photons induce unwanted qubit transitions to higher energy levels.



Superconducting Quantum Circuit for Quantum Computing

G
C,== JI X Qe XJJ

Readout
resonator ——
l -

e o o e o o o e e e e o o o =

The transmon, which can implement a qubit, is realized through a nonlinear LC circuit.

The readout resonator, used to measure the transmon quantum state, consists of a linear LC circuit.

By firing coherent microwave signal, it is possible to control the qubit behavior and read its quantum state.

By courtesy of Alessandro Miano
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