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Superconducting Quantum Circuits

𝑗(𝑡)

𝐶

𝜙

+

−

𝑞

Flux representation 

fundamental observables(𝜙 	= 𝜙, ,𝑞 = −𝑖ℏ
𝜕
𝜕𝜙

1𝐻 = −
ℏ!

2𝐶
𝜕!

𝜕𝜙!
+𝑊" 𝜙 − 𝑗 𝑡 𝜙

Ψ = Ψ 𝜙; 𝑡

𝑖ℏ
𝜕Ψ
𝜕𝑡

= 1𝐻Ψ

Initial conditions:	Ψ 𝜙; 𝑡 = 𝑡# = Ψ# 𝜙

Boundary conditions: Ψ 𝜙; 𝑡  «regular» for 𝜙 → ±∞ or periodic in 𝜙 

𝑊" 𝜙
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A. Widom, Quantum Electrodynamic Circuits at Ultralow Temperature, Journal Journal of Low Temperature Physics, Vol. 37, 
Nos. 3/4, 1979. 4

𝑘$ = 1.380649 × 10−23 J < K−1

Boltzmann constant

ℏ =1.054571817...×10−34 J⋅s-1

(reduced) Planck constant

First hints to quantum circuits

10	𝑚𝐾	 ⟺ 208. 366…𝑀𝐻𝑧
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“Do macroscopic degrees of freedom obey quantum mechanics?” 

M. H. DevoretJ. M. Martinis

J. Clarke

1 A. J. Legget, Macroscopic quantum systems and the quantum theory of measurement, Progress of Theoretical Physics
Supplement, 1980.

Josephson
junction



“Macroscopic nucleus with wires”

6
Science, vol. 239, 1988



3.1.1 Artificial atoms: stationary states
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Isolated Superconducting Quantum Circuit

𝑖ℏ %&
%'
= − ℏ!

!)
%!

%*!
+𝑊" 𝜙  Ψ 𝜙; 𝑡 𝐶𝑊" 𝜙
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Energy Eigenstates

The energy eigenstates are solutions of the eigenvalue problem

(𝐸 𝜉+ 𝜙 = 𝐸𝜉+ 𝜙

(𝐸 = −
ℏ!

2𝐶
𝜕!

𝜕𝜙!
+𝑊" 𝜙

𝐶
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Stationary States

𝑖ℏ %&
%'
= − ℏ!

!)
%!

%*!
+𝑊" 𝜙  Ψ 𝜙; 𝑡

The wave function
Ψ 𝜙; 𝑡 = 𝑒,-+'/ℏ𝜉+ 𝜙

is solution of the time independent Schr�̈�dinger	equation.

It represents a stationary state of the quantum circuit: the probaibility density Ψ 𝜙; 𝑡 ! = 𝜉+ 𝜙 ! is
constant in time.

𝐶
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𝑊" 𝜙



Stationary States

𝐶

𝑊! 𝑥

(𝐸
"
−
𝐸 #
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𝜔
#

𝜙 = 0

𝜒# 𝑥

𝜒$ 𝑥

𝜒% 𝑥

𝜒& 𝑥

(𝐸 = −
ℏ!

2𝐶
𝜕!

𝜕𝜙!
+
1
2𝐿
𝜙!𝐿

11

All eigenstates are bound

Ψ/ 𝜙; 𝑡 = 𝑒,-+"'/ℏ𝜒/ 𝜙



Stationary States

𝐶
𝐶

𝑊! 𝑥
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𝜙 = 0 𝜙

𝑊! 𝑥

𝜒# 𝑥

𝜒$ 𝑥

𝜒% 𝑥

𝜒& 𝑥

𝜉# 𝑥

𝜉$ 𝑥

𝜉% 𝑥

(𝐸 = −
ℏ!

2𝐶
𝜕!

𝜕𝜙!
+
1
2𝐿
𝜙! (𝐸 = − ℏ!

!)
%!

%*!
+ 𝐸0[1 − 𝑐𝑜𝑠 2𝜋𝜙/Φ# ]𝐿
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bound eigenstatesAll eigenstates are bound

Ψ/ 𝜙; 𝑡 = 𝑒,-+"'/ℏ𝜒/ 𝜙 Ψ/ 𝜙; 𝑡 = 𝑒,-+"'/ℏ𝜉/ 𝜙



Stationary States

𝐶(𝐸 = − ℏ!

!)
%!

%*!
+𝐸0 [1 − 𝑐𝑜𝑠 2𝜋𝜙/Φ# ] + 1

!2
 𝜙! 𝐿

𝐸 "
/
ℏ

in
 G

Hz

𝜙 = 0

𝜉# 𝑥

𝜉$ 𝑥

𝑊! 𝑥

2𝜋𝜙/Φ#
13

All eigenstates are bound

Ψ/ 𝜙; 𝑡 = 𝑒,-+"'/ℏ𝜉/ 𝜙



Superposition of Stationary States

𝑖ℏ %&
%'
= − ℏ!

!)
%!

%*!
+𝑊" 𝜙 Ψ 𝜙; 𝑡 𝐶

𝑗 𝑡 = 0Ψ 𝜙; 𝑡 = ∑/ 𝑐/ 𝜉/ 𝜙 𝑒,-3"'	where	𝜔/ = 𝐸// ℏ and	𝑛 = 0,1,2, …

𝑃+ 𝐸/|Ψ = 𝜉/ Ψ ! = 𝑐/ !.

The probability that the measurement of the energy yields the value 𝐸/ when the circuit is in the state Ψ 𝜙; 𝑡 , 
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𝑊" 𝜙



3.1.2 Artificial atoms: Transmon
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Resonator versus Artificial Atom

𝜙

E0

E1

E2

𝐸1 − 𝐸# > 𝐸! − 𝐸1

E0

E1

En

𝑊" 𝜙 = 1
!2
𝜙! 𝑊" 𝜙 = 𝐸0[1 − 𝑐𝑜𝑠 2𝜋𝜙/Φ# ]

𝜙	 = 0 𝜙	 = 0

En
er

gy

En
er

gy

𝐸/ − 𝐸/,1 = ℏ𝜔4

The energy levels of the harmonic oscillator
are uniformly spaced.

Anharmonicity gives arise to non uniformity
in the distribution of energy levels.

𝜙

The nonlinearity of Josephson junction 
allows the realization of artificial atom.

Linear Resonator Artificial Atom
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Artificial Atom: Two different scenarios

Cooper pair box:
+#
+$
≪ 1

𝐶0 𝐶5 = 0

𝐼6

17

Cooper pair box: the “artificial atom” is
highly sensitive to charge noise, which
has proven more challenging to mitigate
than flux noise, making it very hard to
achieve high coherence.

𝐸) =
𝑒!

2𝐶0

Josephson junction

Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, 
Charge-insensitive qubit design derived from the Cooper pair box, Physical Review A, 2007.



Artificial Atom: Two different scenarios

Cooper pair box:
+#
+$
≪ 1

𝐶0 𝐶5 = 0

Transmon: 
+#
+$
≫ 1

𝐶0 𝐶5 >> 𝐶0

𝐼6

𝐼6
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Cooper pair box: the “artificial atom” is
highly sensitive to charge noise, which
has proven more challenging to mitigate
than flux noise, making it very hard to
achieve high coherence.

Transmon: the “artificial atom” is
insensitive to charge noise.

𝐸) =
𝑒!

2𝐶0

𝐸) =
𝑒!

2𝐶'
, 𝐶' = 𝐶0 + 𝐶5

Josephson junction

Josephson junction

Jens Koch, Terri M. Yu, Jay Gambetta, A. A. Houck, D. I. Schuster, J. Majer, Alexandre Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, 
Charge-insensitive qubit design derived from the Cooper pair box, Physical Review A, 2007.

𝐸#1 ≡ 𝐸1 − 𝐸# ≅ ℏ𝜔7 − 𝐸) ,

	𝜔7 =
1
ℏ

8𝐸) 𝐸0



P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, A quantum engineer's guide to superconducting qubits, 
Applied Physics Review, 2019.

𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐	𝑓𝑙𝑢𝑥	𝑏𝑖𝑎𝑠,𝜑'

(𝜙1 (𝜙!

Split transmon

𝐸#1 ≅ ℏ𝜔7 − 𝐸) ,	𝜔7 =
1
ℏ

8𝐸) 𝐸08

𝜑4 = 𝜋Φ4/Φ#

𝐸08 = 𝐸0	cos 𝜋Φ49'/Φ#

(𝐸: ,𝑞, (𝜙1 =
,𝑞!

2𝐶
+ 𝐸08 𝑐𝑜𝑠

𝜋Φ4

Φ#
− 𝑐𝑜𝑠 2𝜋

𝜙1
Φ#

+
𝜋Φ49'

Φ#(𝜙1 ≠ (𝜙!
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𝜔#1 =
𝐸#1
ℏ
, 𝜔1! =

𝐸1!
ℏ



Split transmon

𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐	𝑓𝑙𝑢𝑥	𝑏𝑖𝑎𝑠,𝜑'

(𝜙1 (𝜙!

𝑀𝑎𝑔𝑛𝑒𝑡𝑖𝑐	𝑓𝑙𝑢𝑥	𝑏𝑖𝑎𝑠,𝜑'

(𝜙1 (𝜙!(𝜙1 ≠ (𝜙!

20
P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, A quantum engineer's guide to superconducting qubits, 
Applied Physics Review, 2019.



3.1.3 Artificial atoms: Transition Probabilities
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Transition probability

𝑗(𝑡)

The circuit is assumed to be in the stationary state 𝜉- 𝜙 𝑒-3%'	for 𝑡 < 0, e.g.,
𝑗 𝑡 = 0 for 𝑡 < 0.

At	 𝑡 = 0 the current generator switches on, and for 𝑡 > 0 the quantum
state of circuit is no longer the stationary state 𝜉- 𝜙 𝑒-3%'.

We introduce the probability 𝑃-; 𝑡 	of finding the circuit in another
stationary state 𝜉; 𝜙 𝑒-3&' at time 𝑡, in other words, we want to study the
transitions induced by the current generator between the stationary states
𝜉- 𝜙 𝑒-3%'	(initial state) and the stationary state 𝜉; 𝜙 𝑒-3&' (final state).

℘-→; 𝑡 = 𝜉; Ψ
!
= p

,=:9

>*'()
𝜉; 𝜙 Ψ 𝜙; 𝑡 𝑑𝜙

!
Ψ# 𝜙 = 𝜉- 𝜙

22
C. Cohen-Tannoudji, B. Diu and F. Laloë,  Quantum Mechanics, vol. II, 2nd ed., Wiley-VCH, 2019.

𝑗(𝑡)

𝑡



Artificial Atom Driven by a Time Varying Current Source 

𝑗(𝑡)𝐶
𝑖ℏ
𝜕Ψ
𝜕𝑡

= −
ℏ!

2𝐶
𝜕!

𝜕𝜙!
+𝑊" 𝜙 Ψ − 𝑗 𝑡 𝜙Ψ

Ψ 𝜙; 𝑡 = 𝑡# = Ψ# 𝜙
𝑊" = 𝑊" 𝜙

We assume that the spectrum of the energy of the circuit (𝐸	is discrete and not degenerate.

(𝐸

Source term

The energy eigenstates are solutions of the eigenvalue problem

(𝐸 𝜉/ 𝜙 = 𝐸/𝜉/ 𝜙 , 𝑛 = 0,1,2, …
where

𝜉= 𝜉/ = 𝛿=/.

We denote with −𝜙=:9 , +𝜙=:9 the support of the eigenfunctions 𝜉/ 𝜙 .
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𝑗(𝑡)

𝑡



Artificial Atom Driven by a Time Varying Current Source 

The expansion coefficients are functions of time because the Hamiltonian depends
explicitly on time through the interaction term −𝑗 𝑡 𝜙.

𝑗(𝑡)𝐶
𝑖ℏ
𝜕Ψ
𝜕𝑡

= −
ℏ!

2𝐶
𝜕!

𝜕𝜙!
+𝑊" 𝜙 Ψ − 𝑗 𝑡 𝜙Ψ

Ψ 𝜙; 𝑡 = 𝑡# = Ψ# 𝜙
𝑊" = 𝑊" 𝜙

𝑖ℏ
𝜕Ψ
𝜕𝑡

= −
ℏ!

2𝐶
𝜕!

𝜕𝜙!
+𝑊" 𝜙 Ψ − 𝑗 𝑡 𝜙Ψ

Source term

(𝐸
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𝑗(𝑡)

𝑡

Ψ 𝜙; 𝑡 = ∑/ 𝑐/ 𝑡 𝜉/ 𝜙 𝑒,-3"' 	where	𝜔/ = 𝐸// ℏ and	𝑛 = 0,1,2, … .

The solution of the time-dependent Schrödinger equation can represented as a
superposition of the stationary states 𝜉/ 𝜙 𝑒,-3"' ,



Artificial Atom Driven by a Time Varying Current Source 

Substituting this expression into the Schr�̈�dinger	equation, given that 𝜉/ 𝜙 	 is the
eigenfunction of the energy observable with eigenvalue 𝐸/ , and using the
orthonormality property of the eigenfunctions, we obtain for 𝑐= 𝑡 the ordinary
differential equation

�̇�= = 1
-ℏ
∑/𝑊=/ 𝑡 𝑐/ 𝑡 𝑒-3'"' for 𝑚 = 0,1,2, …

where 𝜔=/ = 𝐸= − 𝐸/ /ℏ , 𝑊=/ 𝑡 = 𝑗 𝑡 Φ=/ and Φ=/ = 𝜉= 𝜙𝜉/ .	 The
equations are solved with initial conditions 𝑐= 0 = 𝜉= Ψ# .

𝑗(𝑡)𝐶𝑊" = 𝑊" 𝜙

Ψ 𝜙; 𝑡 = ∑/ 𝑐/ 𝑡 𝜉/ 𝜙 𝑒,-3"' 	where	𝜔/ = 𝐸// ℏ and	𝑛 = 0,1,2, … .
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𝑖ℏ
𝜕Ψ
𝜕𝑡

= −
ℏ!

2𝐶
𝜕!

𝜕𝜙!
+𝑊" 𝜙 Ψ − 𝑗 𝑡 𝜙Ψ

Ψ 𝜙; 𝑡 = 𝑡# = Ψ# 𝜙

𝑖ℏ
𝜕Ψ
𝜕𝑡

= −
ℏ!

2𝐶
𝜕!

𝜕𝜙!
+𝑊" 𝜙 Ψ − 𝑗 𝑡 𝜙Ψ

Source term

(𝐸

𝑗(𝑡)

𝑡

The solution of the time-dependent Schrödinger equation can represented as a
superposition of the stationary states 𝜉/ 𝜙 𝑒,-3"' ,



Transition probability

𝑗(𝑡)

The circuit is assumed to be in the stationary state 𝜉- 𝜙 𝑒-3%'	for 𝑡 < 0.

At	 𝑡 = 0 the current generator is applied, and for 𝑡 > 0 the quantum state
of circuit is no longer the stationary state 𝜉- 𝜙 𝑒-3%'.

We introduce the probability 𝑃-; 𝑡 	of finding the circuit in another
stationary state 𝜉; 𝜙 𝑒-3&' at time 𝑡, in other words, we want to study the
transitions induced by the current generator between the stationary states
𝜉- 𝜙 𝑒-3%'	(initial state) and the stationary state 𝜉; 𝜙 𝑒-3&' (final state),

℘-→; 𝑡 = 𝜉; Ψ
!
= p

,=:9

>*'()
𝜉; 𝜙 Ψ 𝜙; 𝑡 𝑑𝜙

!

= 𝑐; 𝑡
!

Ψ# 𝜙 = 𝜉- 𝜙

26
C. Cohen-Tannoudji, B. Diu and F. Laloë,  Quantum Mechanics, vol. II, 2nd ed., Wiley-VCH, 2019.

𝑗(𝑡)

𝑡



Transition probability

When

𝑗 𝑡 = 𝐽=𝑐𝑜𝑠 𝜔𝑡

then

℘-→; 𝑡 ≅
0'?%&

ℏ

! @-/ 3&%,3 '/!
3&%,3 /!

!
for  𝜔 ≈ 𝜔;- and 1

3&%
≪ 𝑡 ≪ ℏ

0'?%&

where

	𝜔;-=
𝐸; − 𝐸-
ℏ

,Φ-; = 𝜉- 𝜙𝜉; = p
,*'()

>*'()
𝑑𝜙  𝜉- 𝜙 𝜙𝜉; 𝜙 .

C. Cohen-Tannoudji, B. Diu and F. Laloë,  Quantum Mechanics, II, 2nd ed., Wiley-VCH, 2019.
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Selection Rules
𝜉# 𝑥

𝜉1 𝑥

𝜙

𝜉! 𝑥

𝜙

𝜙

Φ#1 = p
,*'()

>*'()
𝜉# 𝜙 𝜙𝜉1 𝜙 𝑑𝜙 ≠ 0

Φ#! = p
,*'()

>*'()

𝜉# 𝜙 𝜙𝜉! 𝜙 𝑑𝜙 = 0

Φ-; = p
,*'()

>*'()
𝑑𝜙  𝜉= 𝜙 𝜙𝜉/ 𝜙

Transitions from the ground state
to excited states with 𝑚 even are
forbidden.

℘-→; 𝑡 ≅
𝐽=Φ-;

ℏ

! 𝑠𝑖𝑛 𝜔;- − 𝜔 𝑡/2
𝜔;- − 𝜔 /2

!



Resonant Interaction

𝑗(𝑡)

0

1
2

m

Ψ# 𝜙 = 𝜉# 𝜙

For	𝜔 = 𝜔1# we obtain  a resonant interaction, 

℘#→1 𝑡 ≅ 0'?*+
ℏ

!
𝑡! for 1

3
≪ 𝑡 ≪ ℏ

0'?*+

℘#→= 𝑡 ≅ 0'?+'
ℏ

! @-/ ,'+-, .
!

,'+-,
!

!

≅ 0	for 𝑚 ≥ 2.

ground state 

first excited state 

and

Transition from the ground
state to the first excited
state occurs through the
absorption of an energy
quantum equal to ℏ𝜔1#.
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Resonant Condition

𝑗(𝑡)

0

1
2

m

Ψ# 𝜙 = 𝜉1 𝜙

℘1→# 𝑡 ≅ 0'?*+
ℏ

!
𝑡! for 1

3
≪ 𝑡 ≪ ℏ

0'?*+

and

℘1→= 𝑡 ≅ 0'?'+
ℏ

! @-/ ,'+-, .
!

,'+-,
!

!

≅ 0	for 𝑚 ≥ 2

For 𝜔 = 𝜔1# we obtain:
Transition from the first
excited state to the ground
state occurs through the
emission of an energy
quantum equal to ℏ𝜔1#.

30

ground state 

first excited state 



Resonant Condition

31

0

1
2

m

Ψ# 𝜙 = 𝜉# 𝜙

ground state 

first excited state 
𝜔 =

𝐸1 − 𝐸#
ℏ

𝜔 ≠
𝐸! − 𝐸1

ℏ
second excited state 

Transmon

0

1

2

Ψ# 𝜙 = 𝜉# 𝜙

ground state 

first excited state 
𝜔 =

𝐸1 − 𝐸#
ℏ

𝜔 =
𝐸! − 𝐸1

ℏ
second excited state 

Linear LC circuit

Uniformly spaced energy levels

Non uniformly spaced energy levels



3.1.4 Artificial atoms: Two level approximation, Qubit, Rabi oscillations and Control
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Two-level approximation

𝑗 𝑡 = 𝐽=𝑐𝑜𝑠 𝜔𝑡

𝐸#

𝐸1

𝐸=

𝜔1# =
𝐸1 − 𝐸#

ℏ

𝐸!

If 𝜔 ≅ 𝜔1# the transition probability ℘#→= 𝑡 = 𝑐= 𝑡 !	for	𝑚 > 1	is negligible with respect to
℘#→1 𝑡 = 𝑐1 𝑡 ! . Analogously, the transition probability ℘1→= 𝑡 = 𝑐= 𝑡 !	for	𝑚 > 1	is
negligible with respect to ℘1→# 𝑡 = 𝑐# 𝑡 !.

Therefore, for describing the time evolution of the atom when 𝜔 ≅ 𝜔1# it is sound to assume
𝑐= 𝑡 ≅ 0	 for	any	𝑚 ≠ 0, 1: the artificial atom behaves as its state space has two dimensions,
namely, the artificial atom behaves as two-level system.
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Qubit

𝐸#

𝐸1
𝜔1# =

𝐸1 − 𝐸#
ℏ

The artificial atom that behaves as a two-level system implements a qubit: the computational space 
consists of the two eigenstates of the atom energy.

ground state

first excited state⟩|1

⟩|0
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Time Evolution of the Qubit State

Ψ 𝜙; 𝑡 ≅ 𝑐# 𝑡 𝜉# 𝜙 𝑒,-3+' + 𝑐1 𝑡 𝜉1 𝜙  𝑒,-3*'

�̇�# =
1
𝑖ℏ
𝑊## 𝑡 𝑐# 𝑡 𝑒-3++' +

1
𝑖ℏ
𝑊#1 𝑡 𝑐1 𝑡 𝑒-3+*'

�̇�1 =
1
𝑖ℏ
𝑊1# 𝑡 𝑐# 𝑡 𝑒-3*+' +

1
𝑖ℏ
𝑊11 𝑡 𝑐1 𝑡 𝑒-3**'

𝜔=/ = 𝐸= − 𝐸/ /ℏ , 

𝑊=/ 𝑡 = 𝐽=Φ=/ 𝑐𝑜𝑠 𝜔𝑡

Φ=/ = 𝜉= 𝜙𝜒/ = ∫,*'()

>=:9 𝑑𝜙 𝜉= 𝜙 𝜙𝜉/ 𝜙 	

with 𝑐# 0 = 𝜉# Ψ# , 𝑐1 0 = 𝜉1 Ψ# .

Disregarding all the terms with
𝑚 ≥ 2 in the expression of the
wave function, we obtain

C. Cohen-Tannoudji, B. Diu and F. Laloë,  Quantum Mechanics, vol. I, 2nd ed., Wiley-VCH, 2019.
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Φ## = Φ11 = 0,Φ1# = Φ#1 = ∫,*'()

>=:9 𝑑𝜙  𝜉# 𝜙 𝜙𝜉1 𝜙

𝜔## = 𝜔11 = 0, 𝜔1# =
+*,++
ℏ

, 𝜔#1 = −𝜔1#

�̇�# =
1
𝑖ℏ
𝑊## 𝑡 𝑐# 𝑡 𝑒-3++' +

1
𝑖ℏ
𝑊#1 𝑡 𝑐1 𝑡 𝑒-3+*'

�̇�1 =
1
𝑖ℏ
𝑊1# 𝑡 𝑐# 𝑡 𝑒-3*+' +

1
𝑖ℏ
𝑊11 𝑡 𝑐1 𝑡 𝑒-3**'

𝜔=/ = 𝐸= − 𝐸/ /ℏ , 

𝑊=/ 𝑡 = 𝐽=Φ=/ 𝑐𝑜𝑠 𝜔𝑡

Φ=/ = 𝜉= 𝜙𝜒/ = ∫,*'()

>*'() 𝑑𝜙 𝜉= 𝜙 𝜙𝜉/ 𝜙 	

Time Evolution of the Qubit State

with 𝑐# 0 = 𝜉# Ψ# , 𝑐1 0 = 𝜉1 Ψ# .

Ψ 𝜙; 𝑡 ≅ 𝑐# 𝑡 𝜉# 𝜙 𝑒,-3+' + 𝑐1 𝑡 𝜉1 𝜙  𝑒,-3*'

Disregarding all the terms with
𝑚 ≥ 2 in the expression of the
wave function, we obtain



37

�̇�# =
0'?*+
-ℏ

𝑐1 𝑡 𝑒,-3*+' 𝑐𝑜𝑠 𝜔𝑡

�̇�1 =
0'?*+
-ℏ

𝑐# 𝑡 𝑒>-3*+' 𝑐𝑜𝑠 𝜔𝑡

with 𝑐# 0 = 𝜉# Ψ# , 𝑐1 0 = 𝜉1 Ψ#

𝜔1# =
+*,++
ℏ

, Φ1# = ∫,*'()

>*'() 𝑑𝜙  𝜉# 𝜙 𝜙𝜉1 𝜙

Time Evolution of the Qubit State

Ψ 𝜙; 𝑡 ≅ 𝑐# 𝑡 𝜉# 𝜙 𝑒,-3+' + 𝑐1 𝑡 𝜉1 𝜙  𝑒,-3*'

�̇�# = −𝑖ΩA𝑐𝑜𝑠 𝜔𝑡 𝑐1 𝑡 𝑒,-3*+',

�̇�1 = −𝑖ΩA𝑐𝑜𝑠 𝜔𝑡 𝑐# 𝑡 𝑒>-3*+',

ΩB =
0'?*+
ℏ

	is the Rabi frequency.

with 𝑐# 0 = 𝜉# Ψ# , 𝑐1 0 = 𝜉1 Ψ#

For a transom Φ1# ≅
ℏC.
!

where 𝑍' =
2#
).
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𝑏# 𝑡 ≅ 𝑐𝑜𝑠
ΩA
2
𝑡 − 2𝑖

𝜔 − 𝜔1#
ΩA

𝑠𝑖𝑛
ΩA
2
𝑡 ,

                    𝑏1 𝑡 ≅ −𝑖 D/
D0
𝑠𝑖𝑛 D0

!
𝑡 ,

𝑐# 𝑡 = 𝑒- 3,3*+ '/! 𝑏# 𝑡 ,

	𝑐1 𝑡 = 𝑒,- 3,3*+ '/! 𝑏1 𝑡 ,

Resonant wave approximaLon

ΩA 𝜔 = 𝜔 − 𝜔1# ! + ΩB!

if ΩB ≪ 𝜔1# and 𝜔 ≈ 𝜔1#

In the resonant condition 𝜔 = 𝜔1#	it is ΩA = ΩB.

is the Rabi flopping frequency.where

Ψ 𝜙; 𝑡 ≅ 𝑐# 𝑡 𝜉# 𝜙 𝑒,-3+' + 𝑐1 𝑡 𝜉1 𝜙  𝑒,-3*'
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Probabilities

𝑐# 𝑡 ! = 𝑏# 𝑡 ! = 1 −
ΩB!

ΩA!
𝑠𝑖𝑛!

ΩA
2
𝑡

𝑐1 𝑡 ! = 𝑏# 𝑡 ! =
ΩB!

ΩA!
𝑠𝑖𝑛!

ΩA
2
𝑡

𝑏# 𝑡 ≅ 𝑐𝑜𝑠
ΩA
2
𝑡 − 2𝑖

𝜔 − 𝜔1#
ΩA

𝑠𝑖𝑛
ΩA
2
𝑡 ,

                    𝑏1 𝑡 ≅ −𝑖 D/
D0
𝑠𝑖𝑛 D0

!
𝑡 ,

𝑐# 𝑡 ! + 𝑐1 𝑡 ! = 1

𝐸#

𝐸1
𝜔1# =

𝐸1 − 𝐸#
ℏground state

first excited state The qubit is initially in the ground state,
𝑐# 0 = 1, 𝑐1 0 = 0.



Rabi Oscillations
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π /ΩR 2π /ΩR

ΩA = 𝜔 − 𝜔1# ! + ΩB!

℘#→1 𝑡 = 𝑐1 𝑡 !

𝑐# 𝑡 ! = 1 −
ΩB
ΩA

!

𝑠𝑖𝑛!
ΩA
2
𝑡

𝑐1 𝑡 ! =
ΩB
ΩA

!
𝑠𝑖𝑛!

ΩA
2
𝑡

ΩB
ΩA

!

𝐸#

𝐸1
𝜔1# =

𝐸1 − 𝐸#
ℏ

C. Cohen-Tannoudji, B. Diu and F. Laloë,  Quantum Mechanics, vol. I, 2nd ed., Wiley-VCH, 2019.



Rabi Oscillations
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π /ΩR 2π /ΩR

ΩA = 𝜔 − 𝜔1# ! + ΩB!

℘#→1 𝑡 = 𝑐1 𝑡 ! = 𝑠𝑖𝑛!
ΩA
2
𝑡

Resonant interaction

the circuit goes 
in to the excited state at 

t1 ≅ π /ΩR

the circuit comes back 
in to the ground state at 

t2 ≅ 2π /ΩR

lim
3→3*+

ΩB
ΩA

!
= 1

𝐸#

𝐸1
𝜔1# =

𝐸1 − 𝐸#
ℏ



3.2.1 Linear LC circuit: stationary states
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Linear LC Circuit

𝑗(𝑡)

𝐶

𝜙

+

−

𝑞
𝑖ℏ
𝜕Ψ
𝜕𝑡

= −
ℏ!

2𝐶
𝜕!

𝜕𝜙!
+
1
2𝐿
𝜙! Ψ − 𝑗 𝑡 𝜙Ψ 𝑊" =

1
2𝐿
𝜙!

(𝐸

source term

43



Energy Eigenstates

− ℏ!

!)
%!

%*!
+ 1

!2
𝜙! 𝜒/ = 𝐸/ 𝜒/,  𝑛 = 0,1,2, …

(𝐸 = − ℏ!

!)
%!

%*!
+ 1

!2
𝜙!

𝐶
𝐿

𝜙6 = ℏ𝑍#, 𝑞6 = ℏ/𝑍#

𝜔B =
1
2)
	, 𝑍# =

2
)

44C. Cohen-Tannoudji, B. Diu and F. Laloë,  Quantum Mechanics, vol. I, 2nd ed., Wiley-VCH, 2019.



Energy Eigenstates

− ℏ!

!)
%!

%*!
+ 1

!2
𝜙! 𝜒/ = 𝐸/ 𝜒/,  𝑛 = 0,1,2, …

(𝐸 = − ℏ!

!)
%!

%*!
+ 1

!2
𝜙!

𝐶
𝐿

,𝑎 = 1
!

1
*1

(𝜙 + 𝑖 1
E1
,𝑞  

,𝑎F =
1
2

1
𝜙6

(𝜙 − 𝑖
1
𝑞6
,𝑞

𝜙6 = ℏ𝑍#, 𝑞6 = ℏ/𝑍#

𝜔B =
1
2)
	, 𝑍# =

2
)

(𝐸 = ℏ𝜔B ,𝑎F ,𝑎 +
1
2

1𝑁 = ,𝑎F ,𝑎 is the number operator, it is self-adjoint (𝐸 = ℏ𝜔B 1𝑁 +
1
2

45

annihilation and 
creation operators, they are not self-adjoint

C. Cohen-Tannoudji, B. Diu and F. Laloë,  Quantum Mechanics, vol. I, 2nd ed., Wiley-VCH, 2019.



Energy Eigenstates
(𝐸 = ℏ𝜔B 1𝑁 + 1

!
, 1𝑁 = ,𝑎F ,𝑎

1𝑁𝜒/ = 𝑛𝜒/

𝑊! 𝜙

(𝐸
"
−
𝐸 #
)i

n 
un

its
 o

f ℏ
𝜔
#

𝜙	 = 0 𝜙

𝜒# 𝜙

𝜒$ 𝜙

𝜒% 𝜙

𝜒& 𝜙

𝑛 = 0,1,2, … .

ℏ𝜔B 	is the quantum of energy or 
the photon.

𝐸/ = ℏ𝜔B 𝑛 + 1
!

with 𝑛 = 0,1,2, …

ground state

first excited state state

second excited state state

𝐸# =
1
2
ℏ𝜔B

𝐸1 =
3
2
ℏ𝜔B

𝐸! =
3
2
ℏ𝜔B

ℏ𝜔B

ℏ𝜔B
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E0 =

1
2
ω r

 
E1 =

3
2
ω r

 
E2 =

5
2
ω r

 
E3 =

7
2
ω r

φ χn
= χn

∗ φ( )φχn φ( )∫ dφ = 0

47

χ3 φ( )

χ2 φ( )

χ1 φ( )

χ0 φ( )

q χn
= χn

∗ φ( ) !
i
d
dφ

χn φ( )∫ dφ = 0

ϕ/𝜙! ϕ/𝜙!

ϕ/𝜙! ϕ/𝜙!

ϕ/𝜙! ϕ/𝜙!

ϕ/𝜙! ϕ/𝜙!

χ3
2

χ1
2

χ0
2

χ2
2

Energy Eigenstates of the linear LC Circuit



 
E0 =

1
2
ω r

 
E1 =

3
2
ω r

 
E2 =

5
2
ω r

 
E3 =

7
2
ω r
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χ3 φ( )

χ2 φ( )

χ1 φ( )

χ0 φ( )

φ 2
χn
= n + 1

2
⎛
⎝⎜

⎞
⎠⎟ !Z0

q2
χn
= n + 1

2
⎛
⎝⎜

⎞
⎠⎟
!
Z0

Energy Eigenstates of the linear LC Circuit

ϕ/𝜙! ϕ/𝜙!

ϕ/𝜙! ϕ/𝜙!

ϕ/𝜙! ϕ/𝜙!

ϕ/𝜙! ϕ/𝜙!

χ3
2

χ1
2

χ0
2

χ2
2

𝑍# =
𝐿
𝐶
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Φzpf
n( ) = n + 1

2
⎛
⎝⎜

⎞
⎠⎟ !Z0 = n + 1

2
⎛
⎝⎜

⎞
⎠⎟Φc ,  Qzpf

n( ) = n + 1
2

⎛
⎝⎜

⎞
⎠⎟
!
Z0

= n + 1
2

⎛
⎝⎜

⎞
⎠⎟Qc𝜙6 𝑞6

Φzpf
n( ) = φ 2

χn
,  Qzpf

n( ) = q2
χn

«fluctuations»

Fluctuations

𝜙6 ≅ 3.3	×10,1G V< 𝑠, 	Φ6𝜔B ≅ 3.3	𝜇𝑉	voltage	fuctuactions	in	the	𝐠𝐫𝐨𝐮𝐧𝐝	𝐬𝐭𝐚𝐭𝐞

𝑞6 ≅ 3.3	×10,1H C, 𝑄6𝜔B ≅ 0.33	𝜇𝐴  current intensity fluctuations in the ground state  

𝜙6 = ℏ𝑍#, 𝑞6 = ℏ/𝑍#

𝜔B = 1011
𝑟𝑎𝑑
𝑠
, 𝑍# = 10Ω	



Stationary States

𝐶

𝜙

+

−

𝑞
𝑖ℏ
𝜕Ψ
𝜕𝑡

= −
ℏ!

2𝐶
𝜕!

𝜕𝜙!
+
1
2𝐿
𝜙! Ψ 𝑊" =

1
2𝐿
𝜙!

(𝐸

𝐸/ = ℏ𝜔B 𝑛 + 1
!

with 𝑛 = 0,1,2, … and 𝜔B = 1/ 𝐿𝐶

Ψ 𝜙; 𝑡 = 𝑒,-+"'/ℏ𝜒/ 𝜙

where

(𝐸 𝜒/ 𝜙 = 𝐸/𝜒/ 𝜙

𝑊! 𝜙

(𝐸
"
−
𝐸 #
)i

n 
un

its
 o

f ℏ
𝜔
#

𝜙	 = 0 𝜙

𝜒# 𝜙

𝜒$ 𝜙

𝜒% 𝜙

𝜒& 𝜙
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Driven linear LC circuit

51

j(t)

+

−

q𝜙

+

−

𝐿 𝐶

𝑖ℏ
𝜕Ψ
𝜕𝑡

= −
ℏ!

2𝐶
𝜕!

𝜕𝜙!
+
1
2𝐿
𝜙! Ψ − 𝑗 𝑡 𝜙Ψ

(𝐸

source term
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Driven linear LC circuit

Ψ 𝜙; 𝑡 = �
/

𝑐/ 𝑡 𝜒/ 𝜙 𝑒,-3"'𝑖ℏ
𝜕Ψ
𝜕𝑡

= −
ℏ!

2𝐶
𝜕!

𝜕𝜙!
+
1
2𝐿
𝜙! Ψ − 𝑗 𝑡 𝜙Ψ

Ψ 𝜙; 𝑡 = 0 = 𝜒 # 𝜙

�̇�= = 1
-ℏ
∑/𝑊=/ 𝑡 𝑐/ 𝑡 𝑒-3'"' for 𝑚 = 0,1,2, …,

where 𝜔=/ = 𝐸= − 𝐸/ /ℏ , 𝑊=/ 𝑡 = 𝑗 𝑡 Φ=/ and Φ=/ =
ℏC+
!

𝑛 + 1𝛿=,/>1 + 𝑛𝛿=,/,1 . These

equations are solved with the initial conditions 𝑐# 0 = 1 and 𝑐/ 0 = 0 for 𝑛 = 1,2, … .
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Driven linear LC circuit

Ψ 𝜙; 𝑡 = �
/

𝑐/ 𝑡 𝜒/ 𝜙 𝑒,-3"'𝑖ℏ
𝜕Ψ
𝜕𝑡

= −
ℏ!

2𝐶
𝜕!

𝜕𝜙!
+
1
2𝐿
𝜙! Ψ − 𝑗 𝑡 𝜙Ψ

Ψ 𝜙; 𝑡 = 0 = 𝜒 # 𝜙

In this case the energy levels are
uniformly spaced, therefore all the
energy eigenstates can be resonantly
excited. The linear LC circuit cannot
behave as a two-level system.1

2
!ω r

1
2
!ω r + !ω r

1
2
!ω r + 2!ω r

1
2
!ω r + 3!ω r

!ω r

!ω r

!ω r

𝜒# 𝜙

𝜒1 𝜙

𝜒! 𝜙

𝜒J 𝜙

�̇�= = 1
-ℏ
∑/𝑊=/ 𝑡 𝑐/ 𝑡 𝑒-3'"' for 𝑚 = 0,1,2, …,

where 𝜔=/ = 𝐸= − 𝐸/ /ℏ , 𝑊=/ 𝑡 = 𝑗 𝑡 Φ=/ and Φ=/ =
ℏC+
!

𝑛 + 1𝛿=,/>1 + 𝑛𝛿=,/,1 . These

equations are solved with the initial conditions 𝑐# 0 = 1 and 𝑐/ 0 = 0 for 𝑛 = 1,2, … .
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c0 t( ) 2

c1 t( ) 2 c2 t( ) 2

Unlike the stationary states of an anharmonic oscillator 
all stationary states are excited (200 basis function).

𝑗 𝑡 = 𝐽=𝑠𝑖𝑛 𝜔𝑡 , with resonant condition 𝜔 ≅ 𝜔B

𝜔B𝑡

Driven linear LC circuit

𝑐J 𝑡 !



3.2.2 Linear LC circuit: coherent quasi-classical states
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𝜙 - representation

Coherent Quasi – Classical state

Ψ φ;t( ) = χ0 φ( )e− iω rt /2 = 1
πφc

⎛
⎝⎜

⎞
⎠⎟

1/2

exp − φ 2

2φc
2

⎛
⎝⎜

⎞
⎠⎟
e− iω rt /2Stationary ground state

classical limits *2
*1

= !++
ℏ3/
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Coherent Quasi – Classical state

Ψ φ;t( ) = χ0 φ( )e− iω rt /2 = 1
πφc

⎛
⎝⎜

⎞
⎠⎟

1/2

exp − φ 2

2φc
2

⎛
⎝⎜

⎞
⎠⎟
e− iω rt /2Stationary ground state

𝜙 &341 𝑡 = 	p
,K

>K
ΨE@6∗ 𝜙; 𝑡 𝜙ΨE@6 𝜙; 𝑡 𝑑𝜙

𝑞 &341 𝑡 = 	p
,K

>K
ΨE@6∗ 𝜙; 𝑡

ℏ
𝑖
𝜕
𝜕𝜙

ΨE@6 𝜙; 𝑡 𝑑𝜙

where

average flux 

average charge 

ΨE6@ 𝜙; 𝑡 =
1
𝜋𝜙6

1/!

𝑒𝑥𝑝 −
1
2
𝜙 − 𝜙 &341 𝑡

𝜙6

!

𝑒𝑥𝑝 𝑖 𝑞 &341 𝑡
𝜙
ℏ
−
1
2
𝜔B𝑡

∆𝜙 =
𝜙6
2
, ∆𝑞 =

𝑞6
2
	⟹ 	∆𝜙∆𝑞 =

ℏ
2

Coherent quasi-classical state 

𝜙 - representation
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Coherent Quasi – Classical State

The function ΨE6@ 𝜙; 𝑡  is solution of the Schröodinger equation provided that

𝑑
𝑑𝑡

𝜙 &341 =
1
𝐶
𝑞 &341 ,

M
M'

𝑞 &341 = − 1
2
𝜙 &341 + 𝑗 𝑡 ,

𝜙 &341 𝑡 = 0 = 0, 𝑞 &341 𝑡 = 0 = 0.

j(t)𝜙 &341

+

−

𝐿 𝐶
Classical equations 

for the driven 
LC circuit 

𝑞 &341

Ψ φ;t( ) = χ0 φ( )e− iω rt /2 = 1
πφc

⎛
⎝⎜

⎞
⎠⎟

1/2

exp − φ 2

2φc
2

⎛
⎝⎜

⎞
⎠⎟
e− iω rt /2Stationary ground state

ΨE6@ 𝜙; 𝑡 =
1
𝜋𝜙6

1/!

𝑒𝑥𝑝 −
1
2
𝜙 − 𝜙 &341 𝑡

𝜙6

!

𝑒𝑥𝑝 𝑖 𝑞 &341 𝑡
𝜙
ℏ
−
1
2
𝜔B𝑡Coherent quasi-classical state 

𝜙 - representation
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𝜙 - representation

Quasi – classical state

ΨE6@ 𝜙; 𝑡
!
=

1
𝜋𝜙6

𝑒𝑥𝑝 −
𝜙 − 𝜙 &341 𝑡

𝜙6

!

ΨE6@ 𝜙; 𝑡 =
1
𝜋𝜙6

1/!

𝑒𝑥𝑝 −
1
2
𝜙 − 𝜙 &341 𝑡

𝜙6

!

𝑒𝑥𝑝 𝑖 𝑞 &341 𝑡
𝜙
ℏ
−
1
2
𝜔B𝑡

Probability density
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Time evolution of quasi-classical states: free evolution

𝜙

Q

Q

𝜙

𝜙

𝜙

𝑡 = 𝑡1

𝑡 = 𝑡!

𝑡 = 𝑡J

𝑡 = 𝑡N

ΨE6@ 𝜙; 𝑡
!
=

1
𝜋𝜙6

𝑒𝑥𝑝 −
𝜙 − 𝜙 &341 𝑡

𝜙6

!

𝜙 &341

+

−

𝐿 𝐶

𝜙 &341 𝑡 = Φ=𝑐𝑜𝑠 𝜔B𝑡 + 𝛾

ΨE6@ 𝜙; 𝑡
!



61

Time evolution of quasi-classical states: driven evolution

𝛼 𝑡 ≡
1
2

1
𝜙6

𝜙 &341 + 𝑖
1
𝑞6

𝑞 &341

𝐸 &341 𝑡 = ℏ𝜔B 𝛼 𝑡 ! +
1
2

𝛼 𝑡 ! =
1
ℏ𝜔B

𝐸 &341 𝑡 −
1
2

When 𝛼 𝑡 ! 	≫ 1, 𝛼 𝑡 !	gives the  “average” number of photons stored in the circuit. 

where

𝛼 𝑡 =
𝑖
2𝑞6

p
#

'
𝑒,-3/ ','5 𝑗 𝑡′ 𝑑𝑡′

and
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Photon generation in quasi – classical state

𝑗 𝑡 = 𝐽=𝑠𝑖𝑛 𝜔𝑡

𝛼 𝑡 ≅
𝑖Ω#
2𝜔,

𝑒,-3/' 𝑒-3-' − 1

𝛼 𝑡 =
𝑖
2𝑞6

p
#

'
𝑒,-3/ ','5 𝑗 𝑡′ 𝑑𝑡′

If 𝜔 ≈ 𝜔B we obtain

where 𝜔, = 𝜔B − 𝜔 and Ω# =
0'
!E1

. Therefore, it results

𝛼 𝑡 ! ≅
Ω#
𝜔,

!

𝑠𝑖𝑛!
𝜔,𝑡
2

In the resonance condition, 𝜔B = 𝜔 we obtain

𝛼 𝑡 ! ≅
Ω#𝑡
2

!
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Photon generation in quasi – classical state
The probability of finding the circuit in the energy eigenstate ⟩|𝜒= is given by the Poisson distribution 

where 𝑚 &341 is the average value of number of photons in the state �|𝜓E@6 : it varies in time and
depends on the intensity of the classical current source.

𝑚 &341 	=1

𝑚 &341 	=5

𝑚 &341 	=10

m

P(
m

)

𝑃O341 𝑚; 𝑡 = 𝜒= ΨE@6
!
=

= 6341
'

=!
𝑒𝑥𝑝 − 𝑚 &341   with m = 0,1,2,…

Expectation value of photon number

𝑚 &341 = 𝛼 𝑡 !
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Photon generation in quasi – classical state
The probability of finding the circuit in the energy eigenstate ⟩|𝜒= is given by the Poisson distribution 

where 𝑚 O341 is the average value of number of photons in the state �|𝜓E@6 : it varies in time and
depends on the intensity of the classical current source.

𝑚 O341 	=1

𝑚 O341 	=5

𝑚 O341 	=10

m

P(
m

)

𝑃O341 𝑚; 𝑡 = 𝜒= ΨE@6
!
=

= 6341
'

=!
𝑒𝑥𝑝 − 𝑚 O341   with m = 0,1,2,…

Expectation value of photon number

𝑚 &341 = 𝛼 𝑡 !

Variance of photon number

Δ𝑚 &341 = 𝑚!
&341 − 𝑚 &341

! = 𝛼 𝑡



Δ𝑚 &341

𝑚 &341

=
1
𝛼

classical limit 𝛼 >>1 
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Photon generation in quasi – classical state
The probability of finding the circuit in the energy eigenstate ⟩|𝜒= is given by the Poisson distribution 

where 𝑚 O341 is the average value of number of photons in the state �|𝜓E@6 : it varies in time and
depends on the intensity of the classical current source.

𝑚 O341 	=1

𝑚 O341 	=5

𝑚 O341 	=10

m

P(
m

)

𝑃&341 𝑚; 𝑡 = 𝜒= ΨE@6
!
=

= 6341
'

=!
𝑒𝑥𝑝 − 𝑚 &341   with m = 0,1,2,…

Expectation value of photon number

𝑚 &341 = 𝛼 𝑡 !

Variance of photon number

Δ𝑚 &341 	 = 𝑚!
&341 − 𝑚 &341

! = 𝛼 𝑡
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3.2.3 Linear LC circuit: Dispersive readout



Transmon coupled to a resonator
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𝜙B

+

−

𝐿B 𝐶B

𝐶Q

𝐼6 𝐶'𝑗 𝑡

𝑄B
𝜙'

+

−

𝑄'

In the weak coupling limit 𝐶B , 𝐶' >> 𝐶Q 𝑄B is canonical conjugate to 𝜙B, and 𝑄'	is	canonical	conjugate	to	𝜙' .
This system has two degree of freedom: 𝜙B and 𝜙'. 



Hamiltonian in the Weak Coupling

(𝐸B (𝐸' 1𝐻-/' 1𝐻MB-R4

68

+

−

𝜙B

+

−

𝐿B 𝐶B

𝐶Q

𝐼6 𝐶'𝑗 𝑡 𝑞B 𝜙'

+

−

+

−

𝑞'

𝐻 ≅
(𝑄B!

2𝐶B
+

(𝜙B!

2𝐿B
+

(𝑄'!

2𝐶'
+	𝐸0 1 − 𝑐𝑜𝑠

2𝜋 (𝜙'
Φ#

+
𝐶Q
𝐶B𝐶'

(𝑄B  (𝑄' − 𝑗 𝑡 𝜙B
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Ø 𝜔' transition frequency of the transmon, 𝜔' =
+*
. ,++

.

ℏ

Ø 𝑍S characteristic impedance of the transmon, 𝑍' = 𝐿0/𝐶' where 𝐿0 =
1
!T

?+
"1

𝐸#
'

𝐸1
'

𝜒# 𝜙'

𝜒1 𝜙'

Effective Hamiltonian in the Dispersive Regime
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Ø 𝜔' transition frequency of the transmon, 𝜔' =
+*
. ,++

.

ℏ

Ø 𝑍S characteristic impedance of the transmon, 𝑍' = 𝐿0/𝐶' where 𝐿0 =
1
!T

?+
"1

𝐸#
'

𝐸1
'

𝜒# 𝜙'

𝜒1 𝜙'

−𝐸#8

+ 𝐸#8

𝜒# 𝜙'

𝜒1 𝜙'

𝐸#8 ≡ ℏ𝜔'/2

In the two-level approximation, the transmon Hamiltonian can be expressed as (𝐸' = 𝐸#8 ,𝜎 where the Pauli
operator ,𝜎 is such that

,𝜎𝜒# 𝜙' = −𝜒# 𝜙' and ,𝜎 𝜒1 𝜙' = +𝜒1 𝜙'

𝐸#
'

𝐸1
'

𝜒# 𝜙'

𝜒1 𝜙'

ℏ𝜔'

Effective Hamiltonian in the Dispersive Regime
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Ø 𝜔B natural frequency of the linear LC circuit, 𝜔B = 1/ 𝐿B𝐶B

Ø 𝑍B characteristic impedance of the linear LC circuit, 𝑍B = 𝐿B/𝐶B

𝜂 = D!

U3
, ∆𝜔 = 𝜔' − 𝜔B,	Ω6 =

1
!
)7
)/).

1
C/C.

Ø 𝜔' transition frequency of the transmon, 𝜔' =
+*
. ,++

.

ℏ

Ø 𝑍S characteristic impedance of the transmon, 𝑍' = 𝐿0/𝐶' where 𝐿0 =
1
!T

?+
"1

𝐸#
'

𝐸1
'

𝜒# 𝜙'

𝜒1 𝜙'

Effective Hamiltonian in the Dispersive Regime



Effective Hamiltonian in the Dispersive Regime
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Ø 𝜔B natural frequency of the linear LC circuit, 𝜔B = 1/ 𝐿B𝐶B

Ø 𝑍B characteristic impedance of the linear LC circuit, 𝑍B = 𝐿B/𝐶B

1𝐻4; ≅
ℏ
2
𝜔' + 𝜂 ,𝜎 + ℏ 𝜔B + 𝜂 ,𝜎 1𝑁 − 𝑗 𝑡 (𝜙

𝜂 = D!

U3
, ∆𝜔 = 𝜔' − 𝜔B, Ω6 =

1
!
)7
)/).

1
C/C.

Dispersive regime D1
U3

≪ 1

Ø 𝜔' transition frequency of the transmon, 𝜔' =
+*
. ,++

.

ℏ

Ø 𝑍S characteristic impedance of the transmon, 𝑍' = 𝐿0/𝐶' where 𝐿0 =
1
!T

?+
"1

𝐸#
'

𝐸1
'

𝜒# 𝜙'

𝜒1 𝜙'

A. Blais et al., Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, PHYSICAL 
REVIEW A 69, 062320 (2004).

A. Blais et al., Circuit quantum electrodynamics, Reviews of Modern Physics 93, April-June 2021.

where 1𝑁 = ,𝑎F ,𝑎



Dispersive coupling
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transmon 1𝐻B8  driven resonator

𝜓 𝜙' , 𝜙B; 𝑡 ≅ 𝑐# 𝑡 𝜉# 𝜙' Ψ#
E@6 𝜙B; 𝑡 + 𝑐1 𝑡 𝜉1 𝜙' Ψ1

E@6 𝜙B; 𝑡

1𝐻4; ≅
ℏ
2
𝜔' + 𝜂 ,𝜎 + ℏ 𝜔B + 𝜂 ,𝜎 1𝑁 − 𝑗 𝑡 (𝜙B

Ω6
Δ𝜔

≪ 1	dispersive	regime 𝜂 =
Ω!

Δ𝜔

We assume Δ𝜔 = 𝜔' − 𝜔B < 0



Dispersive coupling
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transmon 1𝐻B8  driven resonator

𝜓 𝜙' , 𝜙B; 𝑡 ≅ 𝑐# 𝑡 𝜉# 𝜙' Ψ#
E@6 𝜙B; 𝑡 + 𝑐1 𝑡 𝜉1 𝜙' Ψ1

E@6 𝜙B; 𝑡

1𝐻4; ≅
ℏ
2
𝜔' + 𝜂 ,𝜎 + ℏ 𝜔B + 𝜂 ,𝜎 1𝑁 − 𝑗 𝑡 (𝜙B

,𝜎𝜒# 𝜙' = −𝜒# 𝜙' and ,𝜎 𝜒1 𝜙' = +𝜒1 𝜙'

1𝐻B8𝜓 𝜙' , 𝜙B; 𝑡 = 𝑐# 𝑡 𝜉# 𝜙' ℏ 𝜔B −
D!

U3
1𝑁 − 𝑗 𝑡 (𝜙B  Ψ#

E@6 𝜙B; 𝑡 + 𝑐1 𝑡 𝜉1 𝜙' ℏ 𝜔B +
D!

U3
1𝑁 − 𝑗 𝑡 (𝜙B  Ψ1

E@6 𝜙B; 𝑡

Ω6
Δ𝜔

≪ 1	dispersive	regime 𝜂 =
Ω!

Δ𝜔

We assume Δ𝜔 = 𝜔' − 𝜔B < 0

𝜔B −
Ω!

Δ𝜔
> 𝜔B 𝜔B +

Ω!

Δ𝜔
< 𝜔B



We assume Δ𝜔 = 𝜔' − 𝜔B < 0

Dispersive coupling

75

In the dispersive regime, the resonator frequency becomes qubit-state dependent:

Ø if the transmon is in the ground state 𝜒# 𝜙' 	the resonator natural frequency is 𝜔B +
D1!

U3
> 𝜔B;

Ø if the transmon is in the excited state 𝜒1 𝜙' 	the resonator natural frequency is 𝜔B −
D1!

U3
< 𝜔B .

transmon driven resonator

Ω6
Δ𝜔

≪ 1	dispersive	regime 𝜂 =
Ω!

Δ𝜔

1𝐻4; ≅
ℏ
2
𝜔' + 𝜂 ,𝜎 + ℏ 𝜔B +

Ω!

Δ𝜔
,𝜎 1𝑁 − 𝑗 𝑡 (𝜙B



Dispersive qubit readout

Phase

𝜔𝜔B

Phase response for the voltage
𝑣B = �̇�B in absence of interaction
with the transmon.
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𝜙B

+

−

𝐿B 𝐶B

𝐶Q

𝐼6 𝐶'𝑗 𝑡

𝑄B
𝜙'

+

−

𝑄'



Dispersive qubit readout

Phase

𝜔
𝜔B

phase response of LC circuit 
interacting with the transmon in 
the excited state: the phase at 
𝜔 = 𝜔B  is negative.
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Δ𝜔 < 0

𝜔B +
Ω!

Δ𝜔

𝜒1 𝜙'

Phase

𝜔

𝜔B

𝜔B −
Ω!

Δ𝜔

𝜒# 𝜙'

Δ𝜔 < 0

phase response of LC circuit 
interacting with the transmon in 
the ground state: the phase at 
𝜔 = 𝜔B  is positive.
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Signal-to-Noise Ratio

Maximizing the Signal-to-Noise Ratio (SNR) is crucial. The SNR can be enhanced by increasing the probe
power, i.e., the average number of photons 𝑁 , for the detection of the resonator state.

Nevertheless, 𝑁 must be significantly less than the critical photon number

𝑁 6 = Δω/2Ω6 !.

If not, the approximation

is no longer valid. Then, photons induce unwanted qubit transitions to higher energy levels.

1𝐻4; ≅
ℏ
2
𝜔' + 𝜂 ,𝜎V + ℏ 𝜔B + 𝜂 ,𝜎V 1𝑁 − 𝑗 𝑡 (𝜙B



Josephson
junctions

By courtesy of Alessandro Miano 79

Superconducting Quantum Circuit for Quantum Computing

CrLr

CG

CG
CB JJ JJΦext

Transmon artificial atom

Readout
resonator

to rf readout to rf control
Cred Ccon

By firing coherent microwave signal, it is possible to control the qubit behavior and read its quantum state.

The transmon, which can implement a qubit, is realized through a nonlinear LC circuit.

The readout resonator, used to measure the transmon quantum state, consists of a linear LC circuit.


