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The general computational process

|x⟩n

Uf

|x⟩n

|y⟩m |y ⊕ f(x)⟩m

Why do we need to have separate input and output register?
We have to guarantee the reversibility of our transformation even in presence of non-injective
functions

The introduced transformation is invertible. Indeed, Uf is its own inverse:

Uf Uf |x⟩n |y⟩m = Uf |x⟩n |y ⊕ f(x)⟩m = |x⟩n |y ⊕ f(x) ⊕ f(x)⟩m = |x⟩n |y⟩m

Forestiere & Miano Introduction to Circuit Quantum Electrodynamics 3-7 Feb 2025 4 / 37



Hadamard Gate

Hadamard Gate

H |0⟩ = 1√
2

(|0⟩ + |1⟩) H |1⟩ = 1√
2

(|0⟩ − |1⟩)

H ⊗ H |0⟩ ⊗ |0⟩ = (H |0⟩) (H |0⟩) = 1
2 (|0⟩ |0⟩ + |1⟩ |0⟩ + |0⟩ |1⟩ + |1⟩ |1⟩)

H⊗n |0⟩n = 1
2n/2

∑
0≤x≤2n

|x⟩n

|0⟩n H⊗n
1

2n/2

∑
0≤x≤2n

|xn⟩
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Quantum Parallelism?

Uf

(
H⊗n ⊗ 1m

)
|0⟩n |0⟩m = 1

2n/2

∑
0≤x≤2n

Uf

(
|x⟩n |0⟩m

)
) = 1

2n/2

∑
0≤x≤2n

|x⟩n |f(x)⟩m

|0⟩n H⊗n

Uf

1
2n/2

∑
0≤x≤2n

|xn⟩

|0⟩m

1
2n/2

∑
0≤x≤2n

|f(x)⟩m

before letting Uf act, we apply a Hadamard transformation to every Qbit of the input register,
initially in the state |0⟩n,

the result of the computation is described by a state whose structure cannot be explicitly
specified without knowing the result of all 2n evaluations of f (x)
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Quantum Parallelism?

If we have a hundred Qbits in the input register, initially all in the state |0⟩100 (and m more in
the ouput register)

if a hundred Hadamard gates act on the input register before the application of Uf , then the
form of the final state contains the results of 2100 ≈ 1030 evaluations of the function f(x)

A billion billion trillion evaluations! quantum parallelism

Caveat
There is no way to know what the state is!
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Quantum Parallelism?

Uf

(
H⊗n ⊗ 1m

)
|0⟩n |0⟩m = 1

2n/2

∑
0≤x≤2n

Uf

(
|x⟩n |0⟩m

)
) = 1

2n/2

∑
0≤x≤2n

|x⟩n |f(x)⟩m

we send all n+m Qbits through measurement gates

the Born rule tells us that if the state of the registers has the above form then with equal
probability the result of measuring the Qbits will be one of the values of x less than 2n

while the results of measuring the Qbits in the output register will be the value of f for that
particular x

After the measurement the state of the register reduces to |x0⟩ |f (x0)⟩
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No cloning theorem

If there were an easy way to make copies of the output state prior to make the measurement,
without running the computation again, then one could with high probability, learn the value of
f (x) for several different values of x

No cloning theorem
There is no unitary transformation that can take the state |ψ⟩n |0⟩n into the state |ψ⟩n |ψ⟩n for
arbitrary |ψ⟩n.
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No cloning theorem
proof

There is no unitary transformation that can take the state |ψ⟩n |0⟩n into the state |ψ⟩n |ψ⟩n for
arbitrary |ψ⟩n.

Let us assume
Uf |ψ⟩ |0⟩ = |ψ⟩ |ψ⟩
Uf |φ⟩ |0⟩ = |φ⟩ |φ⟩

From linearity we expect that

Uf (a |ψ⟩ + b |φ⟩) |0⟩ = a |ψ⟩ |ψ⟩ + b |φ⟩ |φ⟩

By applying the definition we have

Uf (a |ψ⟩ + b |φ⟩) |0⟩ = (a |ψ⟩ + b |φ⟩) (a |ψ⟩ + b |φ⟩)
= a2 |ψ⟩ |ψ⟩ + b2 |φ⟩ |φ⟩ + ab |ψ⟩ |φ⟩ + ba |φ⟩ |ψ⟩

Forestiere & Miano Introduction to Circuit Quantum Electrodynamics 3-7 Feb 2025 10 / 37



Take home message

One can extract useful information about relations between the values of f for several values of x,
which classical computer can only get by making independent evaluations
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Measurement Gate
Born rule

0/1
|ψ⟩

initial state
|0⟩ / |1⟩

|ψ⟩ = α0 |0⟩ + α1 |1⟩ with |α0|2 + |α1|2 = 1

Born rule
If the state of the Q-bit is the superposition of the states |0⟩ and |1⟩ with amplitudes α0 and α1 then
the result of the measurement is

0 with probability |α0|2

1 with probability |α1|2
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Measurement Gate
Collapse of the state

0/1
|ψ⟩

initial state
|0⟩ / |1⟩

|ψ⟩ = α0 |0⟩ + α1 |1⟩ with |α0|2 + |α1|2 = 1

State collapse
What is the state of the Q-bit after the measurement?

if the measurement returns the value 0, the state will be |0⟩;

if the measurement returns the value 1, the state will be |1⟩
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Measurement Gate
Born rule and collapse of the state

x
|Ψ⟩n |x⟩n

If the state of n Qbits is
|Ψ⟩n =

∑
0≤x<2n

αx |x⟩n

Born rule
the probability that the zeros and the ones resulting from measurement of all the Q-bits will give
the binary expansion of the integer x is

p (x) = |αx|2 .

Collapse of the state
If the display of the measurement gate indicates x, then the Q-bits emerging from that
measurement gate is in the classical-basis state |x⟩nForestiere & Miano Introduction to Circuit Quantum Electrodynamics 3-7 Feb 2025 14 / 37



Period finding

f(x) = 7x mod 15

71 = 7 mod 15 = 7

72 = 49 mod 15 = (3 × 15 + 4) mod 15 = 4

73 = 343 mod 15 = (22 × 15 + 13) mod 15 = 13

74 = 2401 mod 15 = (160 × 15 + 1) mod 15 = 1

75 = 16807 mod 15 = (1120 × 15 + 7) mod 15 = 7

76 = 117649 mod 15 = (7843 × 15 + 4) mod 15 = 4

77 = 823543 mod 15 = (54902 × 15 + 13) mod 15 = 13

. . .
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Quantum period finding: preliminary remarks

We can crack the RSA code if we have a way to find the period r of the periodic function

f(x) = bx(modN)

bx(modN) is the kind of function whose values within a period hop about so irregularly as to
offer no obvious clues about the period.

One could try evaluating f(x) for random x until one found two different values of x for
which f agreed.

Those values would differ by a multiple of the period, which would provide some important
information about the value of the period itself.

But this is an inefficient way to proceed, even classically.
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Quantum period finding: preliminary remarks

To have an appreciable probability of finding r by random searching requires a number of
evaluations of f that is exponential in n0

There are classical ways to improve on random searching, using, for example, Fourier
analysis, but no classical approach is known that does not require a time that grows faster than
any power of n0.

With a quantum computer, however, quantum parallelism gets us tantalizingly close to
solving the problem with a single application of Uf , and enables us to solve it completely
with probability arbitrarily close to unity in a time that grows only as a low-order
polynomial in n0.
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Quantum period finding: preliminary remarks

To deal with values of x and f(x) = bx(modN) between 0 and N , both the input and output
registers must contain at least n0 Qbits.

to find the period r efficiently the input register must actually have n = 2n0 Qbits.

Doubling the number of Qbits in the input register ensures that the range of values of x for
which f(x) is calculated contains at least N full periods of f .

This redundancy turns out to be essential for a successful determination of the period by
Shor’s method.
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Quantum period finding: preliminary remarks

We construct the state
1

2n/2

2n−1∑
x=0

|x⟩n|f(x)⟩n0

with a single application of Uf .

If the measurement yields the value f0, then the generalized Born rule tells us that the state of
the n-Qbit input register can be taken to be

|Ψ⟩n = 1√
m

m−1∑
k=0

|x0 + kr⟩n .

x0 is the smallest value of x (0 ≤ x0 < r) for which f (x0) = f0

m is the smallest integer for which mr + x0 ≥ 2n

m =
[2n

r

]
or m =

[2n

r

]
+ 1,

depending on the value of x0 (where [x] is the integral part of x - the largest integer less than
or equal to x ).
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Quantum period finding: preliminary remarks

|Ψ⟩n = 1√
m

m−1∑
k=0

|x0 + kr⟩n .

if we could have a small number of identical copies of the state |Ψ⟩n the job would be done

a measurement in the computational basis would yield a random one of the values x0 + kr

and the difference between the results of pairs of measurements on such identical copies
would give us a collection of random multiples of r from which r itself could
straightforwardly be extracted.

But this possibility is ruled out by the no-cloning theorem.

We can only extract a single value of x0 + kr for unknown random x0, which is useless for
determining r.
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The quantum Fourier transform

The n-Qbit quantum Fourier transform is defined as:

UFT|x⟩n = 1
2n/2

2n−1∑
y=0

e2πixy/2n |y⟩n.

The product xy is ordinary multiplication

One easily verifies that UFT|x⟩ is is unitary.
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Quantum Fourier Transform

A diagram of a circuit that illustrates, for four Qbits, the construction of the quantum Fourier
transform UFT
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Finding the period

|Ψ⟩n = 1√
m

m−1∑
k=0

|x0 + k r⟩n

UFT|x⟩n = 1
2n/2

2n−1∑
y=0

e2πixy/2n |y⟩n

The period r of f appears in the state of the input- register Qbits produced from a single
application of Uf .

To get information about r we apply the quantum Fourier transformation to the input register:

UFT
1√
m

m−1∑
k=0

|x0 + kr⟩ = 1
2n/2

2n−1∑
y=0

1√
m

m−1∑
k=0

e2πi(x0+kr)y/2n |y⟩

UFT
1√
m

m−1∑
k=0

|x0 + kr⟩ =
2n−1∑
y=0

e2πix0y/2n 1√
2nm

(
m−1∑
k=0

e2πikry/2n

)
|y⟩
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Finding the period

UFT
1√
m

m−1∑
k=0

|x0 + kr⟩ =
2n−1∑
y=0

e2πix0y/2n 1√
2nm

(
m−1∑
k=0

e2πikry/2n

)
|y⟩

we now make a measurement

the probability p(y) of getting the result y is the squared magnitude of the coefficient of |y⟩.

The factor e2πix0y/2n
, in which x0 explicitly occurs, drops out of this probability, and we get

p(y) = 1
2nm

∣∣∣∣∣
m−1∑
k=0

e2πikry/2n

∣∣∣∣∣
2

.

The probability p(y) is a simple explicit function of the integer y

p(y) has maxima when y is close to integral multiples of 2n/r.

We may have to repeat the procedure a small number of times to achieve a high probability
of learning the period r.
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Finding the period

p(y) = 1
2nm

∣∣∣∣∣
m−1∑
k=0

e2πikry/2n

∣∣∣∣∣
2

.

the probability that the measured value of y will be within 1
2 of an integral multiple of 2n/r is

p

(∣∣∣∣y − 2n

r

∣∣∣∣ < 1
2

)
≥ 0.4

Forestiere & Miano Introduction to Circuit Quantum Electrodynamics 3-7 Feb 2025 25 / 37



Finding the period

p(y) = 1
2nm

∣∣∣∣∣
m−1∑
k=0

e2πikry/2n

∣∣∣∣∣
2

.

the probability that the measured value of y will be within 1
2 of an integral multiple of 2n/r is

p

(∣∣∣∣y − 2n

r

∣∣∣∣ < 1
2

)
≥ 0.4

Forestiere & Miano Introduction to Circuit Quantum Electrodynamics 3-7 Feb 2025 25 / 37



Finding the period

We calculate this lower bound for p(y) when

y = yh = h2n/r + εh with |εh| ≤ 1
2

Only the term in εh contributes to the exponentials.

The summation is a geometric series, which can be explicitly summed to give

p (yh) = 1
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p (yh) = 1
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sin2 (πεhmr/2n)
sin2 (πεhr/2n)
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Finding the period

p (yh) = 1
2nm

sin2 (πεhmr/2n)
sin2 (πεhr/2n)

m is within an integer of 2n/r

we can with negligible error replace mr/2n by 1 in the numerator

we replace the sine in the denominator by its (extremely small) argument:

p (yh) = 1
2nm

(sin (πεh)
πεhr/2n

)2
= 1
r

(sin (πεh)
πεh

)2

When 0 < x < π/2, the graph of sin x lies above the straight line connecting the origin to the
maximum at x = π/2 :

sin x ≥ x/

(1
2π
)
, 0 ≤ x ≤ π/2
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Finding the period

Since εh ≤ 1
2 the probability is bounded below by

p (yh) ≥
(
4/π2

)
/r

Since there are at least r − 1 different values of h

Since r is a large number, one has at least a 40% chance
(
4/π2 = 0.4053

)
of getting one a

value for y that is within 1
2 of an integral multiple of 2n/r.
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Noise and Decoherence

So far, we have dealt with isolated quantum circuits.

A complete description must also take into account a description of how the quantum circuit
couples with the environment, including the measurement apparatus and the control system.

In a closed system, the evolution of a qubit state is deterministic.

the knowledge of the initial state and the Hamiltonian allows us to predict the qubit state at
any future time.

In opens systems, the qubit interacts with uncontrolled environmental degrees of freedom.

These interactions introduce fluctuations (noise), which cause the qubit’s evolution to deviate
from the ideal prediction.

Over time, this deviation leads to decoherence — the loss of the intended quantum state.
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Types of Noise: Systematic Noise

In superconducting quantum computers, the distinction between systematic and stochastic noise is
crucial for understanding and mitigating errors.

Systematic noise

Source Arises from predictable imperfections in the hardware or control system, such as
fabrication defects in Josephson junctions, crosstalk between qubits, or errors in microwave
pulse shaping.

Impact: These errors can cause coherent, repeatable deviations in the qubit states or gate
operations.

Mitigation: Calibration and fine-tuning of control parameters. Error mitigation techniques.
System-level modeling to identify and correct systematic errors.
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Types of Noise : Stochastic Noise

In superconducting quantum computers, the distinction between systematic and stochastic noise is
crucial for understanding and mitigating errors.

Stochastic noise

Source: Originates from random processes like thermal fluctuations, quantum decoherence,
or background radiation interacting with the qubits.

Impact: Leads to incoherent, unpredictable errors such as spontaneous qubit state flips
(bit-flip) or phase changes (phase-flip).

Mitigation: Improving qubit isolation and shielding from external noise. Operating at
ultra-low temperatures to reduce thermal noise. Using quantum error correction codes to
detect and correct random errors.
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Bloch sphere representation of the quantum state of the qubit.

The state of a qubit is represented as

|ψ⟩ = cos θ2 |0⟩ + eiφ sin θ2 |1⟩

0 < θ < π; 0 < φ < 2π

z

x
y

|ψ⟩

ϕ

θ

The z-axis is longitudinal in the qubit frame, corresponding to σ̂z terms in the qubit
Hamiltonian.

The x-y plane is transverse in the qubit frame, corresponding to σ̂x and σ̂y terms in the qubit
Hamiltonian.
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Longitudinal relaxation
Energy Exchange and Decoherence

Longitudinal relaxation results from the energy exchange between
the qubit and its environment due to transverse noise

Transverse noise couples to the qubit in the x-y plane and drives
transitions |0⟩ ⇆ |1⟩:

Emission (Relaxation): An excited qubit in |1⟩ can spontaneously emit a photon into its
environment and decay to the ground state |0⟩ at a rate Γ1↓ (blue arrow).

Absorption (Excitation): Conversely, the qubit in |0⟩ may absorb energy (a photon) from the
environment and be excited to |1⟩ at a rate Γ1↑ (orange arrow).
In the typical operating regime kBT ≪ ℏωq (T = 20mK and ωt

2π ≈ 5GHz
)

the up-rate is
suppressed. This fact leads to the overall decay rate Γ1 ∼= Γ1↑.
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Measuring the decay lifetime
Protocol

Prepare the qubit in the ground state |0⟩;

At time t = 0, apply a qubit flip Xπ operation to
prepare the qubit in the excited state |1⟩.

Wait a variable time, τ , and then measure the qubit
in the {|0⟩, |1⟩} basis;

For each value τ , this procedure is repeated to obtain
an ensemble average of the qubit polarization:
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Pure dephasing

Dephasing is a non-dissipative decoherence process (no energy is
exchanged with the environment).

It is often driven by a non-resonant or dispersive interaction with
the environmental modes.

Effectively, dephasing can usually be described as a coupling between the qubit phase and the
environment.

Instead of random emission events (as in decay), dephasing can be thought of as random
phase kicks on the qubit system, induced by dispersive environmental coupling.
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A protocol for measuring the dephasing lifetime

A protocol for measuring the dephasing lifetime is the following
(Ramsey measurement protocol) :

Prepare the qubit in the ground state, |0⟩;

At time t = 0, prepare the qubit in the superposition state
|+⟩ = 1/

√
2(|0⟩ + |1⟩) by applying the Y−π/2 transformation;

Allow the state to evolve freely for a variable time, τ , and then
measure the state in the {|+⟩ = 1/

√
2(|0⟩ + |1⟩),

Repeat many times for each value of t to calculate the the
probability of finding the qubit in the |+⟩ state.
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Evolution of lifetimes and coherence times in superconducting qubits

JJ-based qubits are qubits based on Josephson
junction.

Bosonic encoded qubits are qubits where the
quantum information is encoded in
superpositions of multi-photon states in a
quantum harmonic oscillator, and a Josephson
junction circuit mediates qubit operation and
readout

Error corrected qubits represent qubit encodings
in which a layer of active error-correction has
been implemented to increase the encoded qubit
lifetime.
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